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Abstract 

The comparative dynamics of locally differentiable feedback Nash equilibria are derived for the 

ubiquitous class of autonomous and exponentially discounted infinite horizon differential games.  

The resulting refutable implications are intrinsic to the said class of differential games, and thus 

form their basic, empirically testable, properties.  Their relationship with extant results in optimal 

control theory and static game theory is discussed.  Separability conditions are identified on the 

instantaneous payoff and transition functions under which the intrinsic comparative dynamics 

collapse, in form, to those in optimal control problems.  Applications of the results to capital ac-

cumulation and sticky-price games are provided. 
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1.  Introduction 

The derivation of the basic, fundamental, or intrinsic comparative statics of an economic 

model—the archetypal utility maximization problem—can be traced back to Antonelli (1886) 

and Slutsky (1915).  But it was Samuelson (1947, p. 32) who first derived the intrinsic compara-

tive statics of the class of differentiable, unconstrained optimization problems.  Twenty-seven 

years later Silberberg (1974) provided an extension of Samuelson’s (1947) theorem by deriving 

the basic comparative statics of the class of differentiable, constrained optimization problems.  

More than three decades then passed before Partovi and Caputo (2006, 2007) further generalized 

and unified the approach to deriving the fundamental comparative statics of the class of differen-

tiable, constrained optimization problems using the concept of generalized compensated deriva-

tives. 

 It is important to remark at this juncture that the intrinsic comparative statics of differen-

tiable optimization problems are defined as those qualitative comparative statics properties that 

follow solely from the assumption that a locally differentiable solution exists.  The lack of any 

other assumptions on the optimization problem is what makes such properties basic, fundamen-

tal, or intrinsic.  Although it is nearly universal, and indeed often sensible and justifiable, to 

make assumptions regarding the functional forms of the objective or constraint functions, or sup-

pose that certain monotonicity or curvature properties hold on the said functions, these and other 

such ad hoc suppositions transcend those required to derive the fundamental comparative statics 

of a differentiable optimization problem.  Accordingly, such assumptions do not yield intrinsic 

qualitative results and thus are not made in this work. 

 A similar development to that in static optimization took place in continuous time dy-

namic optimization, although it was initiated 43 years after the work of Samuelson (1947).  In 

particular, Caputo (1990a) derived the basic comparative dynamics of an open-loop solution for 

a general class of variational calculus problems, while Caputo (1990b) did the same for an open-

loop solution of a general class of optimal control problems.  More than a decade later, Caputo 

(2003) essentially “closed the loop” by deriving the fundamental comparative dynamics of a 
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closed-loop (or feedback) solution of the class of autonomous and exponentially discounted infi-

nite horizon optimal control problems. 

 Another similar development took place in static (or atemporal) game theory, but this one 

was initiated 49 years after Samuelson’s (1947) basic contribution.  In this case, Caputo (1996) 

derived the intrinsic comparative statics of a general class of static games possessing locally dif-

ferentiable Nash equilibria.  It took only two more years before Caputo (1998) did the same for 

atemporal Stackelberg equilibria. 

 Given the preceding historical evolution, the goal of this paper is a wholly natural one, to 

wit, the derivation of the intrinsic comparative dynamics of locally differentiable feedback Nash 

equilibria for a ubiquitous class of differential games.  The class of differential games contem-

plated are autonomous, exponentially discounted, have an infinite time horizon, and possess a 

feedback information structure for which its corresponding feedback Nash equilibria exist.  This 

class of differential games is, arguably, the most widely employed and studied in economics.  In-

asmuch as the goal of the paper is a natural extension of the aforementioned literature, little mo-

tivation need be provided.  Nonetheless, several remarks are worthwhile to make at this stage. 

 First, given that it is more difficult to derive a closed-form solution for differential games 

than for optimal control problems or static games, the results obtained herein go some way to-

wards overcoming the fact that “It is difficult to obtain results from general differential games,” 

[Reinganum (1982, p. 674)], seeing as the comparative dynamics results are obtained in a rather 

general setting.  Second, the main result shows that all differential games of the said class pos-

sess refutable, and thus in principle, empirically testable comparative dynamics properties.  

Third, these properties are intrinsic to the studied class of differential games and thus should be 

tested or imposed in empirical work that uses differential game theory as the basis for the devel-

opment of an empirical model.  And fourth, the intrinsic comparative dynamics take the form, in 

part, of generalized Slutsky-like expressions, i.e., one portion of the basic comparative dynamics 

take the form of linear combinations of partial derivatives of the feedback Nash equilibria with 
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respect to the parameters and state variables of the game, while the other portion reflects the im-

pact of the strategic nature of the differential game on its basic comparative dynamics. 

 As is often the case when one studies a general class of problems—and there is no excep-

tion in the present instance—certain structural elements of the class point to special cases which 

are wholly unanticipated, yet yield insight not possible in a typical tightly specified setting, and 

which have real utility in applied work.  In particular, it is shown that if the instantaneous payoff 

function of every player is additively separable between that player’s control variables and those 

of every other player, and if, in addition, all the transition functions are additively separable be-

tween the control variables of the different players, then the intrinsic comparative dynamics of 

differential games are of the same form as those in optimal control problems.  Thus, even though 

a differential game is inherently strategic in nature, the above restrictions lead to intrinsic com-

parative dynamics in which the strategic element is absent.  Moreover, the separability restric-

tions are common to many of the applied differential games appearing in the literature, as is 

documented in §3.  Indeed, even the seemingly ubiquitous and workhorse class of linear-

quadratic differential games satisfies the aforesaid separability conditions, thereby implying that 

many of the applied differential games solved in the literature possess intrinsic comparative dy-

namics in which the strategic component vanishes.  Applications of the results to generalized 

capital accumulation and sticky-price games round out the contribution of the manuscript, and at 

the same time, impart some economic intuition to the results. 

 Finally, note that the following notational conventions are adopted: (i) all vectors are col-

umn vectors and are indicated in boldface type, (ii) the derivative of a scalar-valued function 

with respect to a column vector is a row vector, and is indicated by a boldface subscript letter on 

the function, (iii) the derivative of a vector-valued function with respect to a vector is a Jacobian 

matrix, the number of rows of which equal the number of functions being differentiated and the 

number of columns of which equal the number of elements in the vector that the derivative is 

taken with respect to, and is indicated by a boldface subscript letter on the boldface function, and 

(iv) the symbol “†” indicates transposition. 
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2.  Technical Preliminaries 

Consider the class of exponentially discounted and autonomous differential games consisting of 

a finite number  P !Z++  of players, indexed by p !{1,2,…,P} , and played over a infinite time 

horizon, where t ![0,+")  is a fixed but arbitrary initial time, often referred to as a base time. 

The state of the differential game at each instant ! "[t,+#)  is given by the state vector 

x(! )"# , where  ! " !N  is an open set referred to as the state space of the game.  The initial 

value of the state vector, denoted by x(t) , is fixed at the value xt !" , and is thus parametric to 

the players.  In contrast, no conditions are placed on the limiting value of the state vector, i.e., 

lim!"+# x(! )  is free or unrestricted.  Superscripts placed on functions, variables, or parameters 

are used to denote player specific entities.  At every instant ! "[t,+#)  of the game, each player 

p !{1,2,…,P}  chooses the value  u
p (! )"RM p

 of the vector-valued control function u p (!)  to 

maximize their payoff functional.  The state of the differential game evolves according to the 

system of autonomous differential equations  !x(! ) = g x(! ),u
1(! ),u2 (! ),…,uP (! );"( ) , where 

 ! "!K  is a vector of time-independent parameters that enters the transition function g(!)  and 

the instantaneous payoff function f p (!)  of each player p !{1,2,…,P} .  Define  r
p !! ++  as the 

rate of discount used by player p !{1,2,…,P}  in exponentially discounting the instantaneous 

payoff function f p (!) , and also define  r
† =def (r1,r2 ,…,rP )!! ++

P  as the vector of discount rates in 

the differential game.  Furthermore, no constraints are placed on the state variables or the control 

variables of any player.  Finally, and for the purpose of notational clarity, define 

u! p (" ) =def u1(" )†,u2 (" )†,…,u p!1(" )†,u p+1(" )†,…,uP (" )†( )†  as the column vector consisting of the 

value of all the players’ control functions at time ! "[t,+#) , save for player p . 

 Putting the above information together, the class of differential games under considera-

tion is given by 

 V p (!) =def max
up (")

e#r
p [$ # t ] f p x($ ),u1($ ),u2 ($ ),…,uP ($ );%( )d$

t

+&

'  (1) 

 s.t.   !x(! ) = g x(! ),u
1(! ),u2 (! ),…,uP (! );"( ) , x(t) = xt , 
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for p !{1,2,…,P} , where   ! =def (xt
†,"†,r†)† #$ % RK % ! ++

P  is the vector of parameters of the 

game, and V p (!)  is the current value optimal value function—current value function hereafter—

of player p .  Seeing as !  only explicitly enters differential game (1) through the exponential 

discount function and the time horizon is infinite, V p (!)  is not an explicit function of the fixed 

but arbitrary base time t ![0,+") .  The following assumptions are placed on the differential 

game defined in Eq. (1): 

 

(A.1) The payoff functions 
 
f p (!) :RN "p=1

P RM p

" RK # R , p !{1,2,…,P} , and the transition 

functions 
 
gn (!) :RN "p=1

P RM p

" RK # R , n = 1,2,…,N , are C (2)  on their domains.  Fur-

thermore, the payoff functions f p (!) , p !{1,2,…,P} , are bounded. 

(A.2) The information structure of the game is a feedback pattern and therefore consists of the 

set x(! ),",r{ }  at time ! "[t,+#)  for every player p !{1,2,…,P} . 

(A.3) There exists a feedback Nash equilibrium of differential game (1) for each  ! "B(!!;# ) , 

designated by the P-tuple of vectors 

           
 
v z(!;");#,r( ) =def v1 z(!;");#,r( )† ,v2 z(!;");#,r( )† ,…,vP z(!;");#,r( )†( )† $ %p=1

P RM p

, 

where  z(!;")#$ % RN  is the associated trajectory of the state vector,  !
p (";#)$RN , 

p !{1,2,…,P} , is the corresponding trajectory of the current value costate vector of 

player p,  !(";#) =
def !1(";#)†,!2 (";#)†,…,!P (";#)†( )† $RNP , and  B(!

!;" )  is an open 

(N + A + P)-ball centered at the given value  !
! =def (xt

!†,"!†,r!†)† #$ % "K % " ++
P  of ra-

dius ! > 0 . 

(A.4) A feedback Nash equilibrium function v(!)"C (1)  on the open set  !" # $ !K $ ! ++
P , 

where  ! =def (x,",r) : (x,",r) = z(#;$),",r( )%# &[t,+')($ &B($!;) ){ } . 

(A.5) The current value function V p (!)"C (2) , p !{1,2,…,P} , on the open set ! . 

 

 The smoothness supposition in assumption (A.1) is required in view of the fact that a dif-

ferential characterization of the comparative dynamics of feedback Nash equilibria is sought.  
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The bounded nature of every instantaneous payoff function, in conjunction with the exponential 

discount function, implies that the objective functional in the optimal control problem that de-

fines a feedback Nash strategy of player p—given in Eq. (2) below—converges for all playable 

pairs of functions x(!),u p (!)( )  for all p !{1,2,…,P} .  Thus the maximization problem defining 

each player’s feedback Nash strategy is well defined given the infinite time horizon of the game. 

 Assumption (A.2) makes explicit the information that is available to the players at each 

point in time of the game.  In particular, it is assumed that at time ! "[t,+#) , every player 

knows the value of the state vector at time ! , the parameter vector ! , and the discount rate vec-

tor r , an information pattern that is a slight generalization of that defined as feedback by Basar 

and Olsder [1999, Def. 5.6(v)], the generalization being the addition of the parameter vector !  

and the discount rate vector r  to the information structure.  The feedback information structure 

and the autonomous nature of the differential game defined by Eq. (1) implies that the pth 

player’s optimal control at time !  is an explicit function of the value of the state vector at time 

! , i.e., x(! ) , the parameter vector ! , and the discount rate vector r , but not the base time t  or 

the initial value of the state vector xt .  The dependence of the pth player’s optimal control at 

time !  on the parameters (t,xt )  therefore occurs indirectly, via the equilibrium trajectory of the 

state vector z(!;") . 

 Assumption (A.3) asserts the existence of a feedback Nash equilibrium for all values of 

the parameters in some open ball, and is a result of the facts that the information structure of the 

game is of the feedback variety and the class of differential games defined by Eq. (1) is generic.  

Alternatively, one could impose assumptions on the primitives that imply assumption (A.3).  

This approach, however, has a nontrivial disadvantage, to wit, it implies that the resulting com-

parative dynamics are not intrinsic to the differential game but are instead conditioned on suffi-

cient conditions that transcend those implied by directly assuming the existence of a feedback 

Nash equilibrium.  Consequently, such assumptions are not made, as they reduce the generality 

and applicability of the results. 
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 Assumptions (A.4) and (A.5) are crucial to the foregoing analysis and are adopted be-

cause a differential characterization of the intrinsic comparative dynamics of feedback Nash 

equilibria of the differential game defined in Eq. (1) is sought.  The stated differentiability is lo-

cal in nature with respect to the parameter vector (!,r)  and with respect to the value of the state 

vector x .  If, however, v(x;!,r)  is a feedback Nash equilibrium for all x !"  and for all 

 (!,r)"B (!!,r! );#( ) , then by Theorem 4.4 of Dockner et al. (2000), v(x;!,r)  is also subgame 

perfect, i.e., it is a subgame perfect feedback Nash equilibrium, also referred to as a Markov per-

fect Nash equilibrium in the literature.  If this alternative assumption holds, then it is natural to 

extend suppositions (A.4) and (A.5) by instead stipulating that v(!)"C (1)  and  V p (!)"C (2)  for 

p !{1,2,…,P} , for all x !"  and for all  (!,r)"B (!!,r! );#( ) , so that the differentiability ex-

tends over the entire state space—as opposed to just an open neighborhood of the equilibrium 

path of the state vector z(!;")#$ —in order to conform to the fact that v(x;!,r)  is a subgame 

perfect feedback Nash equilibrium under the alternative stipulation.  In contrast to the remark 

about the existence assumption (A.3), sufficient conditions for assumptions (A.4) and (A.5) to 

hold are not known for the general class of differential games under consideration, though for 

certain differential games, e.g., linear-quadratic, the said differentiability holds. 

 By assumptions (A.1) through (A.3) and the definition of a feedback Nash equilibrium, 

the optimal time-path of the pth player’s control vector, to wit, v p z(!;");#,r( ) , is the solution to 

the optimal control problem 

 V p (!) =def max
up (")

e#r
p [$ # t ] f p x($ ),u p ($ ),v# p x($ );%,r( );%( )dt

t

+&

'  (2) 

 s.t.   !x(! ) = g x(! ),u
p (! ),v" p x(! );#,r( );#( ) , x(t) = xt . 

The current value Hamiltonian function H p (!)  corresponding to optimal control problem (2) is 

then defined as 

  H p x,u p ,v! p (x;",r),# p;"( ) =def f p x,u p ,v! p (x;",r);"( ) + # p †g x,u p ,v! p (x;",r);"( ). (3) 
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Given that assumptions (A.1) through (A.4) hold, Eqs. (10)–(13) of Starr and Ho (1969a), Theo-

rem 2.2 of Mehlmann (1988), or Theorem 6.15 of Basar and Olsder (1999) give 

 !H p

!u p x,u p ,v" p (x;#,r),$ p;#( ) = 0M p
† , (4) 

 

!! p † = r p! p † "
#H p

#x
x,u p ,v" p (x;$,r),! p;$( ) " #H p

#ui
x,u p ,v" p (x;$,r),! p;$( )

i=1,i% p

P

& #v i

#x
(x;$,r) , (5) 

  !x = g x,u
p ,v! p (x;",r);"( ) , x(t) = xt , (6) 

p !{1,2,…,P} , as the necessary conditions that a feedback Nash equilibrium v z(!;");#,r( )  

must satisfy, along with the associated state-costate pair z(!;"),#(!;")( ) , where 0
M p
†  is the null 

row vector in  RM p

. 

 It is important to note that the preceding necessary conditions are rarely used to derive or 

qualitatively characterize a feedback Nash equilibrium of a differential game, even if the mathe-

matical structure of the game is exceedingly simple.  As is well known, the difficulty in using 

Eqs. (4) through (6) to derive a feedback Nash equilibrium resides with Eq. (5), the costate equa-

tion.  In particular, the appearance of the M i ! N  Jacobian matrix !v i (x;",r) !x  in the costate 

equation typically precludes one from fruitfully using the said necessary conditions to derive or 

qualitatively characterize a feedback Nash equilibrium.  Instead, the preferred approach is to 

make strong functional form assumptions on f p (!) , p !{1,2,…,P} , and g(!) , and then employ 

the Hamilton-Jacobi-Bellman (HJB) equation that corresponds to optimal control problem (2), 

along with the method of undetermined coefficients—and often some symmetry assumptions—

to derive a closed-form solution for the current value function V p (!)  and feedback Nash equilib-

rium v(!) .  Indeed, this is arguably the canonical approach to finding feedback Nash equilibria. 

 The approach followed below, therefore, is to employ the HJB equation corresponding to 

optimal control problem (2) to qualitatively characterize feedback Nash equilibria of the class of 

differential games defined by Eq. (1).  Seeing as no functional form assumptions are made re-

garding the functions f p (!) , p !{1,2,…,P} , or g(!) , nor are monotonicity, curvature, or similar 

assumptions imposed on them, the ensuing qualitative results follow from the basic assumptions 
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(A.1) through (A.5) and the assertion of optimality alone.  Accordingly, the comparative dynam-

ics results derived in §3 are intrinsic to the aforesaid class of differential games. 

 By Theorem 4.1 of Dockner et al. (2000) and the fact that V p (!)  is not an explicit func-

tion of the fixed but arbitrary base time t ![0,+") , the HJB equation corresponding to optimal 

control problem (2) is given by 

 
 
rV p (x,!,r) = max

up "!M
p
f p x,u p ,v# p x;!,r( );!( ) +Vxp (x,!,r)g x,u p ,v# p x;!,r( );!( ){ }  (7) 

for all p !{1,2,…,P} , where x !"  is the value of the state vector at the fixed but arbitrary base 

time t ![0,+") .  By assumptions (A.1) through (A.5), v p (x;!,r)  is necessarily a locally differ-

entiable solution on !  of the maximization problem defined in Eq. (7).  Furthermore, as re-

marked above, if v(x;!,r)  is a feedback Nash equilibrium for the class of differential games de-

fined by Eq. (1) for all x !"  and  (!,r)"B (!!,r! );#( ) , then v(x;!,r)  is also subgame perfect.  

This wraps up the technical preliminaries. 

 The following section states and proves the central result of the paper.  It also identifies a 

set of separability conditions under which the intrinsic comparative dynamics of a differential 

game collapse, in form, to those in optimal control problems.  Moreover, it is shown how the 

said separability conditions are common to many of the applied differential game models in the 

literature. 

3.  Intrinsic Comparative Dynamics 

The goal of the present section is to derive the intrinsic comparative dynamics of feedback Nash 

equilibria for the class of autonomous, exponentially discounted, and infinite horizon differential 

games defined by Eq. (1).  The proof is surprisingly compact given the generic nature of the 

class of differential games being contemplated.  This is due to the use of recent advances in the 

theory of comparative statics for optimization problems due to Partovi and Caputo (2006, 2007).  

The central result of the paper is given in the ensuing theorem. 
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Theorem 1 (Intrinsic comparative dynamics and maximal rank).  Under assumptions (A.1) 

through (A.5), the intrinsic comparative dynamics of the feedback Nash equilibria v(!)  of dif-

ferential game (1) are summarized by the statement that the (N + K + P) ! (N + K + P)  matrix 

S p v(!)( ) = Sij
p v(!)( )"# $% , p !{1,2,…,P} , i, j = 1,2,…,N + K + P , is symmetric and positive 

semidefinite on ! , where 

 

Sij
p v(!)( )

i, j=1,2,…,N
= f

xium
p

p x,v(!);"( ) + Vxn
p (!)g

xium
p

n x,v(!);"( ) +Vxnxip (!)g
um
p
n x,v(!);"( )#

$
%
&

n=1

N

'#
$(

%
&)m=1

M p

' *vm
p (!)
*x j

+ f
us
qum

p
p x,v(!);"( ) + Vxn

p (!)g
us
qum

p
n x,v(!);"( )#

$
%
&

n=1

N

'#
$(

%
&)s=1

Mq

'
q=1
q+ p

P

' *vs
q (!)
*xi

*vm
p (!)
*x jm=1

M p

' ,
 (8) 

Sij
p v(!)( )
i=1,2,…,N

j=N +1,…,N +K

= f
xium

p
p x,v(!);"( ) + Vxn

p (!)g
xium

p
n x,v(!);"( ) +Vxnxip (!)g

um
p
n x,v(!);"( )#

$
%
&

n=1

N

'#
$(

%
&)m=1

M p

' *vm
p (!)

*" j+N

+ f
us
qum

p
p x,v(!);"( ) + Vxn

p (!)g
us
qum

p
n x,v(!);"( )#

$
%
&

n=1

N

'#
$(

%
&)s=1

Mq

'
q=1
q, p

P

' *vs
q (!)
*xi

*vm
p (!)

*" j+Nm=1

M p

' ,
(9) 

Sij
p v(!)( )
i=1,2,…,N

j=N +K +1,…,N +K +P

= f
xium

p
p x,v(!);"( ) + Vxn

p (!)g
xium

p
n x,v(!);"( ) +Vxnxip (!)g

um
p
n x,v(!);"( )#

$
%
&

n=1

N

'#
$(

%
&)m=1

M p

' *vm
p (!)

*r j+N +K

+ f
us
qum

p
p x,v(!);"( ) + Vxn

p (!)g
us
qum

p
n x,v(!);"( )#

$
%
&

n=1

N

'#
$(

%
&)s=1

Mq

'
q=1
q, p

P

' *vs
q (!)
*xi

*vm
p (!)

*r j+N +K
m=1

M p

' ,

(10) 

Sij
p v(!)( )

i=N +1,…,N +K
j=1,2,…,N

= f
"i#Num

p
p x,v(!);"( ) + Vxn

p (!)g
"i#Num

p
n x,v(!);"( ) +Vxn"i#N

p (!)g
um
p
n x,v(!);"( )$

%
&
'

n=1

N

($
%)

&
'*m=1

M p

( +vm
p (!)
+x j

+ f
us
qum

p
p x,v(!);"( ) + Vxn

p (!)g
us
qum

p
n x,v(!);"( )$

%
&
'

n=1

N

($
%)

&
'*s=1

Mq

(
q=1
q, p

P

( +vs
q (!)

+" i#N

+vm
p (!)
+x jm=1

M p

( ,

(11) 

Sij
p v(!)( )

i, j=N +1,…,N +K

= f
"i#Num

p
p x,v(!);"( ) + Vxn

p (!)g
"i#Num

p
n x,v(!);"( ) +Vxn"i#N

p (!)g
um
p
n x,v(!);"( )$

%
&
'

n=1

N

($
%)

&
'*m=1

M p

( +vm
p (!)

+" j#N

+ f
us
qum

p
p x,v(!);"( ) + Vxn

p (!)g
us
qum

p
n x,v(!);"( )$

%
&
'

n=1

N

($
%)

&
'*s=1

Mq

(
q=1
q, p

P

( +vs
q (!)

+" i#N

+vm
p (!)

+" j#Nm=1

M p

( ,
 (12) 
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Sij
p v(!)( )

i=N +1,…,N +K
j=N +K +1,…,N +K +P

= f
"i#Num

p
p x,v(!);"( ) + Vxn

p (!)g
"i#Num

p
n x,v(!);"( ) +Vxn"i#N

p (!)g
um
p
n x,v(!);"( )$

%
&
'

n=1

N

($
%)

&
'*m=1

M p

( +vm
p (!)

+r j#N #K

+ f
us
qum

p
p x,v(!);"( ) + Vxn

p (!)g
us
qum

p
n x,v(!);"( )$

%
&
'

n=1

N

($
%)

&
'*s=1

Mq

(
q=1
q, p

P

( +vs
q (!)

+" i#N

+vm
p (!)

+r j#N #K
m=1

M p

( ,

(13) 

  

Sij
p v(!)( )

i=N +K +1,…,N +K +P
j=1,2,…,N

= V
xnr

i"N"K
p (!)g

um
p
n x,v(!);#( )

n=1

N

$
m=1

M p

$ %vm
p (!)
%x j

+ f
us
qum

p
p x,v(!);#( ) + Vxn

p (!)g
us
qum

p
n x,v(!);#( )&

'
(
)

n=1

N

$&
'*

(
)+s=1

Mq

$
q=1
q, p

P

$ %vs
q (!)

%ri"N "K

%vm
p (!)
%x jm=1

M p

$ ,
 (14) 

  

Sij
p v(!)( )

i=N +K +1,…,N +K +P
j=N +1,…,N +K

= V
xnr

i"N"K
p (!)g

um
p
n x,v(!);#( )

n=1

N

$
m=1

M p

$ %vm
p (!)

%# j"N

+ f
us
qum

p
p x,v(!);#( ) + Vxn

p (!)g
us
qum

p
n x,v(!);#( )&

'
(
)

n=1

N

$&
'*

(
)+s=1

Mq

$
q=1
q, p

P

$ %vs
q (!)

%ri"N "K

%vm
p (!)

%# j"Nm=1

M p

$ ,
 (15) 

Sij
p v(!)( )

i, j=N +K +1,…,N +K +P

= V
xnr

i"N"K
p (!)g

um
p
n x,v(!);#( )

n=1

N

$
m=1

M p

$ %vm
p (!)

%r j"N "K

+ f
us
qum

p
p x,v(!);#( ) + Vxn

p (!)g
us
qum

p
n x,v(!);#( )&

'
(
)

n=1

N

$&
'*

(
)+s=1

Mq

$
q=1
q, p

P

$ %vs
q (!)

%ri"N "K

%vm
p (!)

%r j"N "K
m=1

M p

$ ,
 (16) 

Furthermore, rank S p v(!)( )( ) " min(M p ,N + K + P) , p !{1,2,…,P} . 

Proof.  Define the maximand on the right-hand side of the H-J-B equation given in Eq. (2) as 

 F p (u p;!) =def f p x,u p ,v" p (x;#,r);#( ) + Vxn
p (x,#,r)gn x,u p ,v" p (x;#,r);#( )

n=1

N

$ . (17) 

Observe that F p (u p;!)  is the Hamiltonian for optimal control problem (2) with the costate vec-

tor replaced by the gradient vector of the current value optimal value function of player p  with 

respect to the state vector.  By Theorem 1 of Partovi and Caputo (2006, 2007), it follows that for 

all p !{1,2,…,P} , the (N + K + P) ! (N + K + P)  matrix 

 S p v(!)( ) = Sij
p v(!)( )

i, j=1,2,…,N +K +P

"
#$

%
&'
=def F

!ium
p

p v p (!);!( ) (vm
p (!)
(! jm=1

M p

)
i, j=1,2,…,N +K +P

"

#

$
$

%

&

'
'

, (18) 

is symmetric and positive semidefinite on !  in view of assumptions (A.1) through (A.5), and 
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 !i =
def

xi          if i = 1,2,…,N ,
" i#N      if i = N +1,N + 2,…,N + K ,
ri#N #K   if i = N + K +1,N + K + 2,…,N + K + P.

$

%
&

'
&

 (19) 

To prove Theorem 2, it must be shown that Eqs. (8) through (16) follow from Eqs. (17) through 

(19), respectively. 

 In order to derive, say, Eq. (9), begin by differentiating F p (!)  with respect to !i  for 

i = 1,2,…,N  using Eqs. (17) and (19), and then again with respect to um
p  to get 

 
F!i

p (u p;!) = fxi
p x,u p ,v" p (!);#( ) + Vxn

p (!)gxi
n x,u p ,v" p (!);#( ) +Vxnxip (!)gn x,u p ,v" p (!);#( )$% &'

n=1

N

(

+ f
us
q
p x,u p ,v" p (!);#( ) + Vxn

p (!)g
us
q
n x,u p ,v" p (!);#( )$

%
&
'

n=1

N

($
%)

&
'*s=1

Mq

(
q=1,q+ p

P

( ,vs
q (!)
,xi

,
 

 

F
!ium

p
p v p (!);!( ) = f

xium
p

p x,v(!);"( ) + Vxn
p (!)g

xium
p

n x,v(!);"( ) +Vxnxip (!)g
um
p
n x,v(!);"( )#

$
%
&

n=1

N

'

+ f
us
qum

p
p x,v(!);"( ) + Vxn

p (!)g
us
qum

p
n x,v(!);"( )#

$
%
&

n=1

N

'#
$(

%
&)s=1

Mq

'
q=1
q* p

P

' +vs
q (!)
+xi

,
 (20) 

where Eq. (20) has been evaluated at u p = v p (!) , thereby implying that the vector consisting of 

all the players’ control vectors has the value v(!) . Upon multiplying Eq. (20) by the term 

!vm
p (") !" j = !vm

p (") !# j$N  for j = N +1,N + 2,…,N + K  noting Eq. (19), and then summing 

the resulting expression over m , from m = 1  to m = M p , all of which are dictated by Eq. (18), 

yields Eq. (9).   The proof for the remaining eight submatrices of S p v(!)( )  follows the same pat-

tern and is therefore left for the reader.  Applying Theorem 4 of Partovi and Caputo (2006) yields 

the rank conclusion.          Q.E.D. 

 

 At this juncture it worthwhile to pause and make seven extended remarks on Theorem 1.  

First note that the comparative dynamics given in Theorem 1 are heretofore unknown.  What is 

more, they are intrinsic to the class of autonomous, exponentially discounted, infinite horizon 

differential games defined by Eq. (1), seeing as they follow solely from the assertion of maximi-

zation and the basic assumptions (A.1) through (A.5), and are thus are not predicated on func-
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tional form suppositions or ad hoc qualitative properties imposed on the instantaneous payoff 

and transition functions.  As a result, the qualitative results in Theorem 1 form the basic, testable 

implications of all differential games of the aforesaid class. 

 Second, recall that if v(x;!,r)  is a feedback Nash equilibrium for the class of differential 

games defined by Eq. (1) for all x !"  and for all  (!,r)"B (!!,r! );#( ) , then v(x;!,r)  is also 

subgame perfect.  In this case, if assumptions (A.4) and (A.5) are extended to hold for all x !"  

and for all  (!,r)"B (!!,r! );#( ) , then Theorem 1 also characterizes the intrinsic comparative dy-

namics of subgame perfect feedback Nash equilibria.  Consequently, it follows that the intrinsic 

comparative dynamics of feedback Nash equilibria and subgame perfect feedback Nash 

equilibria for the class of differential games defined by Eq. (1) are qualitatively identical.  It is 

worthwhile to observe that the elements of the symmetric and positive semidefinite matrix 

S p v(!)( )  may differ in magnitude between the two equilibria, however, as the equilibria may 

differ themselves—see, e.g., Dockner et al. (2000), Example 4.2 and Example 4.2 (continued). 

 Third, as asserted in §1, the form that the basic comparative dynamics take has, in part, 

the flavor of a generalized Slutsky-like expression.  Consider, for example, Eq. (8).  The general-

ized Slutsky-like expression is the first term in Eq. (8), seeing as it consists of a linear combina-

tion of the partial derivatives of the pth player’s feedback Nash equilibrium control variables 

with respect to the base time values of the state variables, to wit, 

 f
xium

p
p x,v(!);"( ) + Vxn

p (!)g
xium

p
n x,v(!);"( ) +Vxnxip (!)g

um
p
n x,v(!);"( )#

$
%
&

n=1

N

'#
$(

%
&)m=1

M p

' *vm
p (!)
*x j

. (21) 

The second term in Eq. (8), videlicet, 

 f
us
qum

p
p x,v(!);"( ) + Vxn

p (!)g
us
qum

p
n x,v(!);"( )#

$
%
&

n=1

N

'#
$(

%
&)s=1

Mq

'
q=1
q* p

P

' +vs
q (!)
+xi

+vm
p (!)
+x jm=1

M p

' , (22) 

does not have a Slutsky-like flavor, as it includes the effect that a change in the base time value 

of a state variable has on the other players’ feedback Nash equilibrium value of their control 

variables, i.e., !vs
q (") !xi .  Such a term does not have an analogue in the Slutsky equation.  The 

expression appearing in Eq. (22) is fundamentally what distinguishes the intrinsic comparative 
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dynamics of feedback Nash equilibria of differential games from those of feedback (or closed-

loop) equilibria of optimal control problems, as will be shown below.  Because Eq. (22) includes 

the term !vs
q (") !xi , it captures the impact that the strategic nature of the differential game has 

on its intrinsic comparative dynamics.  It is therefore appropriate and natural to define Eq. (21) 

and its counterparts in Eqs. (9) through (16) as the nonstrategic comparative dynamics effect, and 

Eq. (22) and its counterparts in Eqs. (9) through (16) as the strategic comparative dynamics ef-

fect. 

 Fourth, the fact that the rank of the symmetric and positive semidefinite matrix S p v(!)( )  

cannot exceed the smaller of (i) the number of control variables of player p , or (ii) the sum of 

the number of state variables, parameters, and discounts rates in the differential game, implies 

that for most of the applied differential games appearing in the economics literature, S p v(!)( )  is 

singular.  For example, in the capital accumulation game developed in Spence (1979) and Dock-

ner et al. (2000, p. 244). each firm has one control variable, namely, its gross rate of investment, 

and there is also one firm-specific state variable for each firm, viz., its capital stock, for P  in to-

tal.  Moreover, each capital accumulation equation has a firm-specific rate of depreciation and 

the constant price per unit of investment is common to each firm, yielding P +1 parameters (ex-

clusive of the discount rate) in the game.  There is also a common rate of discount employed by 

the firms.  As a result, it follows that M p = 1  and N + K + P = P + [P +1]+1 = 2[P +1]  in the 

game.  Hence S p v(!)( )  is singular, as its order, 2[P +1] , exceeds its maximum rank, unity, by 

at least 2P +1 .  Another differential game in which S p v(!)( )  is singular is the sticky price 

duopoly game of Fershtman and Kamien (1987).  In this game each firm has one control variable 

that influences the evolution of a common state variable.  In addition, the firms use the same dis-

count rate and face three other parameters, hence M p = 1  and N + K + P = 1+ 3+1 = 5 , thereby 

implying that the order of S p v(!)( )  exceeds its rank by at least four. 

 More generally, the singularity of S p v(!)( )  holds for the class of differential games in 

which each player has a single control variable and there is only a single state variable in the 

game, because even if no other parameters appear in it and the players use a common discount 
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rate, M p = 1  and N + K + P = 1+ 0 +1 = 2 , thereby implying that S p v(!)( )  is singular.  It is not 

a stretch, therefore, to claim that for most of the applied differential games in the literature, that 

S p v(!)( )  is singular.  This is especially so for games in which a closed-form solution for a feed-

back Nash equilibrium is derived, as each player typically has but one control variable in such 

games.  By Theorem 1, the rank of the intrinsic comparative dynamics matrix of such games 

cannot exceed unity.  The other fact worth mentioning is that the rank of S p v(!)( )  may be re-

duced below the upper bound given in Theorem 1 due to the specific structure of the basic func-

tions in the game, say by an assumed homogeneity property of a production function. 

 Fifth, the intrinsic comparative statics of Nash equilibria for unconstrained static games 

given by Corollary 2 of Caputo (1996) are a special case of Theorem 1.  To see this, begin by 

noting that in a static game, the decision variables are the analogues of the control variables in a 

differential game.  Because dynamics are absent in a static game, the vector of transition func-

tions is identically zero, i.e., g(!) " 0N .  Moreover, the vector of state variables x  is absent in a 

static game, as is the vector of discount rates r , leaving only the vector of parameters !  in a 

static game.  Consequently, by setting g(!) " 0N  in Eq. (12) and noting the aforementioned facts, 

it is seen that the resulting expression is identical to Corollary 2 of Caputo (1996). 

 Sixth, the intrinsic comparative dynamics of feedback (or closed-loop) optimal controls 

for the class of autonomous and exponentially discounted infinite horizon optimal control prob-

lems given by Theorem 2 of Caputo (2003) are also a special case of Theorem 1.  To see this, re-

call that in an optimal control problem there is but one player, i.e., p = P = 1, and thus one dis-

count rate r , thereby implying that  ! =def (x†,"†,r)† #$ % !A % ! ++ .  These facts imply that 

!vq (") !" # 0
Mq $(N +K +1)  for q ! p .  As a result, the strategic comparative dynamics effect in 

each of the nine submatrices in Eqs. (8) through (16) of Theorem 1, that is, the term involving 

the triple summation over m , s , and q , vanishes identically, leaving only the nonstrategic term 

in each submatrix.  But these nonstrategic terms constitute exactly the nine submatrices of Theo-

rem 2 of Caputo (2003), thereby establishing the claim. 
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 And seventh, if (i) the instantaneous payoff function of every player is additively separa-

ble between that player’s control variables and those of every other player, and (ii) all the transi-

tion functions are additively separable with respect to the control variables of the different play-

ers, then the strategic comparative dynamics effect of feedback Nash equilibria vanishes.  The 

above form of additive separability may be stated in the ensuing mathematical form: 

f
us
qum

p
p (x,u p ,u! p;") # 0  and g

us
qum

p
n (x,u p ,u! p;") # 0  for p,q !{1,2,…,P} , q ! p , m = 1,2,…,M p , 

n = 1,2,…,N , and s = 1,2,…,M q .  Using these conditions in Theorem 1, it follows that the term 

involving the triple summation over m , s , and q  vanishes identically in Eqs. (8) through (16), 

i.e., the strategic comparative dynamics effects vanish identically, leaving only the nonstrategic 

effect.  This result is sufficiently novel, and the separability conditions are quite common, as in-

dicated below, that it is worthwhile to have a formal statement of the result. 

 

Corollary 1.  If f
us
qum

p
p (x,u p ,u! p;") # 0  and g

us
qum

p
n (x,u p ,u! p;") # 0  for p,q !{1,2,…,P} , q ! p , 

m = 1,2,…,M p , n = 1,2,…,N , and s = 1,2,…,M q , then the intrinsic comparative dynamics of 

feedback Nash equilibria for the class of differential games defined by Eq. (1) do not contain any 

strategic comparative dynamics effect. 

 

 We close this section with three remarks on Corollary 1.  First, observe that the additive 

separability of a given player’s instantaneous payoff function does not (i) apply to that player’s 

control variables, (ii) pertain to the control variables of any two other players, nor (iii) involve 

any of the parameters or state variables.  Moreover, the said separability on the transitions func-

tions does not (i) apply to a given player’s control variables, nor (ii) involve any of the parame-

ters or state variables.  Other related, but quite different, separability restrictions have proven to 

be of some value in the differential game literature.  For example, Dockner et al. (1985) and 

Dockner et al. (2000, Chapter 7) identify structural assumptions on the instantaneous payoff and 

transition functions of the players that lead to an analytically solvable class of differential games.  

In particular, they show that linearity in the state variables and additive separability between all 
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of the control and state variables of the aforesaid functions yields an analytically solvable class 

of differential games with an open-loop information structure.  Similarly, Bacchiega et al. 

(2010), building off of Rubio (2006), employ separability assumptions that apply to two groups 

of mutually exclusive players in a class of differential games in which each player has one con-

trol variable and the number of state variables equals the number of players.  Specifically, they 

show that if the integrand and transition functions of the said class of differential game are addi-

tively separable with respect to the state and control variables of players in the two mutually ex-

clusive groups, then feedback Nash and feedback Stackelberg equilibria coincide. 

 Second, the additive separability does not have to hold globally, even though the corol-

lary states it in such terms.  Indeed, as long as the additive separability holds at a feedback Nash 

equilibrium, Corollary 1 still holds.  Nonetheless, it is easier to check that the separability holds 

globally—it can be done simply by inspection of the instantaneous payoff and transition func-

tions—than if it holds at a feedback Nash equilibrium, because in the latter case, the feedback 

Nash equilibrium would have to be computed, typically a task only suitable for tightly specified 

instantaneous payoff and transition functions. 

 And third, Corollary 1 applies to many of the applied differential game models in the lit-

erature.  A sample of differential games for which Corollary 1 is applicable includes the sticky 

price games of Fershtman and Kamien (1987) and Cellini and Lambertini (2007), the oligopoly 

pricing games in Dockner (1984) and Feichtinger and Dockner (1985), the Vidale-Wolfe-, 

Lanchester- and Leitmann-type advertising games surveyed by Jørgensen (1982) and the modi-

fied Case-type advertising game in Sorger (1989), the international pollution control game in 

Dockner and Long (1993) as well as many of the environmental games surveyed by Long (2010, 

Chapter 2), the common property resource games in Negri (1989), Rubio and Casino (2001), 

along with many of the resource games surveyed in Long (2010, Chapter 3) and Long (2011), the 

capital accumulation games in Spence (1979), Reynolds (1987, 1991), Dockner et al. (2000, 

Chapter 9), Jun and Vives (2004), and Figuières (2009), as well as the industrial organization 

games surveyed by Long (2010, Chapter 5), and finally, the workhorse (and essentially ubiqui-
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tous) class of linear-quadratic differential games in Mehlmann (1988, Chapter 4), Dockner et al. 

(2000, Chapter 7), and Engwerda (2005, Chapter 8). 

4.  A Capital Accumulation Game 

The differential game under consideration in this section is a generalization of the finite horizon 

capital accumulation game of Spence (1979).  See Dockner et al. (2000, Chapter 9) and Long 

(2010, Chapter 5) for a comprehensive overview of the literature stemming from the seminal pa-

per of Spence (1979).  In the more general case studied here, the differential game takes the form 

 V p (!) =def max
I p (")

# p K($ )( ) % wpK p ($ ) % qI p ($ ) % C p I p ($ )( )&' ()e
%r[$ % t ]d$

t

+*

+  (23) 

 s.t.   !K
n (! ) = I n (! ) " # nK n (! ) , Kn (t) = Kt

n , n = 1,2,…,P , 

where p !{1,2,…,P}  indexes the firms, K p (! ) > 0  is the pth firm’s capital stock, wp > 0  is the 

pth firm’s maintenance cost per unit of capital, I p (! )  is the pth firm’s reversible investment rate 

and thus its control variable, q > 0  is the price per unit of investment faced by all the firms, 

! p (K)  is the pth firm’s maximum profit flow net of variable production costs, C p (!)  is the ad-

justment cost function of the pth firm, r > 0  is the common rate of discount used by the firms, 

and ! p > 0  is the depreciation rate of the pth firm’s capital stock.  It is also useful to define 

 K(! ) =
def K1(! ),K 2 (! ),…,KP (! )( )† "! ++

P ,  w =def (w1,w2 ,…,wP )† !! ++
P ,  ! =def (q,w†)† "! ++

P+1 , and 

 ! =def (Kt
†,"†,r)† #! ++

2P+2 .  Note that the rates of depreciation have been suppressed from ! , as 

the effects of changes in the ! n  on a feedback Nash equilibrium are not considered so as to keep 

the ensuing exposition relatively free from an excessive number of equations.  Denote a feedback 

Nash equilibrium for the differential game by  I
!(") =def I1!("), I 2!("),…, I P!(")( )† #!P .  Finally, 

suppositions (A.1) through (A.5) are assumed to hold in what follows. 

 An inspection of the capital accumulation game in Eq. (23) shows that the separability 

conditions in Corollary 1 hold, thereby implying that the strategic comparative dynamics effects 

vanish.  Accordingly, applying Theorem 1 to the above game leads to a rather simple form for 

the (2P + 2) ! (2P + 2)  symmetric and positive semidefinite matrix S p I!(")( ) = Sij
p I!(")( )#$ %& , 

p !{1,2,…,P} , i, j = 1,2,…,2P +1 , namely 
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 S p I!(")( ) =

V
K pKi
p #I p!

#K j

i, j=1,2,…,P

V
K pKi
p #I p!

#q
i=1,2,…,P
j=P+1

V
K pKi
p #I p!

#w j$P$1

i, j=1,2,…,P
j=P+2,P+3,…2P+1

V
K pKi
p #I p!

#r
i=1,2,…,P
j=2P+2

[V
K pq
p $1]#I

p!

#K j

i=P+1
j=1,2,…,P

[V
K pq
p $1]#I

p!

#q
i, j=P+1

[V
K pq
p $1] #I p!

#w j$P$1

i=P+1
j=P+2,P+3,…2P+1

[V
K pq
p $1]#I

p!

#r
i=P+1
j=2P+2

V
K pwi$P$1
p #I p!

#K j

i=P+2,P+3,…2P+1
j=1,2,…,P

V
K pwi$P$1
p #I p!

#q
i=P+2,P+3,…2P+1
j=P+1

V
K pwi$P$1
p #I p!

#w j$P$1

i, j=P+2,P+3,…2P+1

V
K pwi$P$1
p #I p!

#r
i=P+2,P+3,…2P+1
j=2P+2

V
K pr
p #I p!

#K j

i=2P+2
j=1,2,…,P

V
K pr
p #I p!

#q
i=2P+2
j=P+1

V
K pr
p #I p!

#w j$P$1

i=2P+2
j=P+2,P+3,…,2P+1

V
K pr
p #I p!

#r
i, j=2P+2

%

&

'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'

(

)

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

, (24) 

where the parameter vector !  has been suppressed.  Furthermore, Theorem 1 implies that 

rank S p I!(")( )( ) # min(M p ,N + K +1) = min(1,P + [P +1]+1) = 1 .  The symmetry and positive 

semidefiniteness of S p I!(")( )  for each p !{1,2,…,P} , along with its maximal rank, represents 

the heretofore undiscovered intrinsic qualitative properties of the capital accumulation game de-

fined by Eq. (23). 

 One noteworthy feature of S p I!(")( )  is its form.  Each element essentially consists of the 

product of two terms, scilicet, (i) the effect of a change in a capital stock or price on the current 

value shadow price of the pth firm’s capital stock, e.g., V
K pKi
p (!) , and (ii) the effect of a change 

in a capital stock or price on the pth firm’s rate of investment, say, !I p"(#) !q .  This implies that 

in order to carry out an empirical test of the intrinsic comparative dynamics of the capital accu-

mulation game, one must estimate a firm’s investment demand function I p!(")  and its current 

value function V p (!) .  This differs sharply from the price-taking profit maximizing model of the 

firm, as one can estimate the indirect profit function or the factor demand and output supply 

functions in order to test its intrinsic comparative statics.  That is, estimation of both sets of func-

tions is not required in order to test its intrinsic comparative statics, though one might wish to es-

timate both for the econometric reasons, e.g., improved efficiency of the coefficient estimates.  

The form of S p I!(")( )  demonstrates that the basic comparative dynamics of the capital accumu-

lation game do not consist of the signs of the individual partial derivatives of the investment de-
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mand functions with respect to the capital stocks and prices.  This also stands in contrast to the 

basic comparative statics of the aforementioned profit maximization model.  Nevertheless, the 

symmetry and positive semidefiniteness of S p I!(")( )  is a fundamental and empirically testable 

property of the game. 

 The positive semidefiniteness of S p I!(")( )  implies that its elements along the main di-

agonal are nonnegative, thus yielding for each p !{1,2,…,P} , 

 sign !I p"(#)
!Ki

$

%
&

'

(
) = sign V

K pKi
p (#)$% '( , i = 1,2,…,P , (25) 

 sign !I p"(#)
!q

$

%
&

'

(
) = sign V

K pq
p (#) *1$

%
'
( , (26) 

 sign !I p"(#)
!wi$P$1

%

&
'

(

)
* = sign V

K pwi$P$1
p (#)%& () , i = P + 2,P + 3,…,2P +1 , (27) 

 sign !I p"(#)
!r

$

%
&

'

(
) = sign V

K pr
p (#)$% '( . (28) 

Equations (25)–(28) provide a considerable generalization of Proposition 1(ii) of Long (2010, 

Chapter 5) and the comparative dynamics results of Jun and Vives (2004, p. 256), as they both 

rely upon strong functional form and symmetry assumptions and limit the game to two players, 

whereas the symmetry and positive semidefiniteness of S p I!(")( )  relies only upon assumptions 

(A.1) through (A.5). 

 Equation (25) asserts that the effect of an increase in the ith firm’s capital stock on the 

pth firm’s rate of investment is the same as the effect of an increase in the ith firm’s capital stock 

on the pth firm’s current value shadow price of its own capital stock.  Using the taxonomy in 

Definitions 2 and 3 of Long (2010, Chapter 5), Eq. (25) shows that value function substitutability 

in the capital stocks is equivalent to Markov control-state substitutability, and does so, in gen-

eral, for capital accumulation games.  Thus Eq. (25) answers the call by Figuières (2009, p. 60) “ 

… to explore the importance of complementarity and substitutability concepts in a class of dynamic 

games that goes beyond the linear quadratic specification.”  In addition, Eq. (25) shows that con-
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cavity of the pth firm’s current value function in its own capital stock is equivalent to the pth 

firm’s investment rate being a locally and weakly decreasing function of its own capital stock. 

 Equation (26) shows that the law of demand, i.e., !I p"(#) !q $ 0 , is not intrinsic to the 

capital accumulation game.  Instead, Eq. (26) shows that the law of demand holds if and only if 

an increase in the price of investment causes the current value shadow price of capital to increase 

by less than the increase in the price of investment, i.e., if and only if V
K pq
p (!) " 1 .  Equation (27) 

shows that the rate of investment by the pth firm decreases as the maintenance cost of capital of 

any firm increases, if and only if, the pth firm’s current value shadow price of its own capital 

stock decreases with an increase in the maintenance cost.  Equation (28) has a similar economic 

interpretation.  Roughly speaking, Eqs. (25) through (28) show that a firm’s current value 

shadow price of its own capital stock and its rate of investment respond in a qualitatively identi-

cal manner to a parameter change. 

 The symmetry of S p I!(")( )  yields the fundamental reciprocity conditions of the game.  

As an example, consider the implied reciprocity condition 

 
 
V
K pw!
p (!) "I

p#(!)
"q

= [V
K pq
p (!) $1]"I

p#(!)
"w!

,  ! = 1,2,…,P . (29) 

Given the aforesaid form of S p I!(")( ) , it is not surprising that the reciprocity conditions also in-

volve more than the individual partial derivatives of the investment demand functions with re-

spect to the capital stocks and prices. 

 Because the strategic comparative dynamics effects vanish in the capital accumulation 

game, as noted above, the form of S p I!(")( )  is identical to that of the prototype adjustment cost 

model of the firm.  In other words, the basic qualitative comparative dynamics of the adjustment 

cost model of the firm and the above capital accumulation game are identical, in spite of the fact 

that the equilibria of the two models differ, in general.  This begs the question:  How might one 

then empirically test whether the capital accumulating firms under investigation behave competi-

tively or strategically?  Seeing as the qualitative comparative dynamics are identical in form in 

either case, it seems that the answer is beyond the scope of the current results.  This conclusion, 
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however, is not correct.  In the competitive case, each firm’s optimal investment rate is a func-

tion of the common discount rate and unit cost of investment, as well as its own maintenance 

cost of capital and capital stock.  In the strategic case, each firm’s optimal investment rate is 

likewise a function of the common discount rate and unit cost of investment, but instead is also a 

function of the maintenance costs and capital stocks of all the other firms, in addition to its own.  

This difference is empirically testable and indicates one way to test for competitive or strategic 

behavior on the part of the firms. 

 The next section contemplates a well-known sticky price differential game.  It too satis-

fies the separability conditions of Corollary 1, but a seemingly simple change to its structure im-

plies that Corollary 1 can no longer be applied, in which case Theorem 1 is fruitfully put to use. 

5.  A Sticky-Price Game 

In this section Theorem 1 and Corollary 1 are applied to the sticky-price differential game of 

Fershtman and Kamien (1987), which is given by 

 V ! (") =def max
q! (#)

p($ )q! ($ ) % cq! ($ ) % 1
2 [q

! ($ )]2&' ()e
%r[$ % t ]d$

t

+*

+  (30) 

 s.t.   !p(! ) = s a " q1(! ) " q2 (! ) " p(! )#$ %& , p(t) = pt , 

for ! "{1,2} , where p(! )  is the sticky price of the homogeneous good produced by the firms at 

time ! , q! (" )  is the rate of output of the homogeneous good produced by firm !  at time ! , 

c > 0  is a parameter common to each firm’s cost function, r > 0  is the common rate of discount, 

a > 0  is the reservation price of the good, s > 0  is the speed at which the sticky price adjusts to 

its value on the inverse demand curve, and ! =def (pt ,a,c, s,r) .  One may directly verify that as-

sumptions (A.1) and (A.2) hold for this game.  What’s more, the results in Fershtman and Ka-

mien (1987) show that assumptions (A.3)–(A.5) hold too. 

 The sticky-price game defined by Eq. (30) satisfies the separability conditions of Corol-

lary 1, as is readily deduced by inspection.  More generally, the preceding conclusion follows 

from the fact that the sticky-price game is a member of the linear-quadratic class of differential 
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games.  Therefore, by Corollary 1, the strategic comparative dynamics effects are identically 

equal to zero, just as they are in the capital accumulation game. 

 An application of Theorem 1 to the sticky-price game leads to a simple form for its 5 ! 5  

symmetric and positive semidefinite matrix S! q"(#)( ) , ! "{1,2} , scilicet, 

1! sVpp
"#$ %&

'q"(

'p
1! sVpp

"#$ %&
'q"(

'a
1! sVpp

"#$ %&
'q"(

'c
1! sVpp

"#$ %&
'q"(

's
1! sVpp

"#$ %&
'q"(

'r

!sVpa
" 'q"(

'p
!sVpa

" 'q"(

'a
!sVpa

" 'q"(

'c
!sVpa

" 'q"(

's
!sVpa

" 'q"(

'r
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,(31) 

where q!(")  is the feedback Nash equilibrium of the game.  Furthermore, it follows from Theo-

rem 1 that rank S! q"(#)( )( ) $ min(M ! ,N + K +1) = min(1,1+ 3+1) = 1 .  Note that much of the 

discussion surrounding the corresponding matrix for the capital accumulation game applies to 

Eq. (31), and thus will not be repeated.  Instead, the focus in what follows is on the additional in-

formation forthcoming because of the linear-quadratic structure of the game. 

 Equations (3.2) and (3.8) of Fershtman and Kamien (1987) show that V ! (")  is convex in 

p  for both firms when a stable, symmetric, and linear feedback Nash equilibrium is considered, 

i.e., Vpp
! (") # 0  for ! "{1,2}  in this instance.  They also demonstrated that 1! sVpp

" (#) > 0  holds 

along the aforesaid equilibrium path.  It thus follows from Eq. (31) that !q"#($) !p % 0  for 

! "{1,2} , which recovers Corollary 2 in Fershtman and Kamien (1987).  In other words, the law 

of supply holds for the stable, symmetric, and linear feedback Nash equilibrium.  It should be 

emphasized, however, that the latter result is forthcoming only because it was possible to derive 

a closed-form solution for the feedback Nash equilibrium, which itself is due to the linear-

quadratic structure of the sticky-price game.  As is now shown, even a simple change to the 

structure of the game can profoundly change the structure of its intrinsic comparative dynamics. 
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 Lambertini (2010) modified the sticky-price game of Fershtman and Kamien (1987) by 

replacing the inverse linear demand function with an inverse hyperbolic demand function.  This 

caused the state equation to change to 
 
!p(! ) = s a [q1(! ) + q2 (! )]"# $% & p(! )"# $% , but left the game 

otherwise unaffected.  This seemingly simple change has two implications for the present results.  

First, it is no longer possible to derive a closed-form solution for a symmetric feedback Nash 

equilibrium, as remarked by Lambertini (2010, p. 109).  Consequently, many of the results de-

rived by Fershtman and Kamien (1987) need not hold in Lambertini’s (2010) version of the 

game.  Second, the separability assumptions in Corollary 1 no longer hold for the transition func-

tion, so that Corollary 1 no longer applies to the modified game.  As a result, the strategic com-

parative dynamics effects are part of the intrinsic comparative dynamics in this case. 

 To see the latter point, let ! = 1  and consider, e.g., the (1,1) element Spp
1 q!(")( )  of 

S1 q!(")( )  from Eq. (31).  Given that g(p,q1,q2;a, s) =def s a [q1 + q2 ]!" #$ % p!" #$ , it follows from 

Theorem 1 that 

 
Spp
1 q!(")( ) = 1+ g

q1
Vpp
1#

$
%
&
'q1!

'p
+Vp

1g
q1q2

'q1!

'p
'q2!

'p

= 1+ g
q1
Vpp
1#

$
%
& +Vp

1g
q1q2

'q2!

'p
#

$
(

%

&
)
'q1!

'p
* 0.

 (32) 

The second term in the first line on the right-hand side of Eq. (32) is the strategic comparative 

dynamics effect, which heretofore has been absent in the two contemplated games.  As remarked 

above, it is not possible to derive a closed-form solution for a symmetric feedback Nash equilib-

rium when the inverse demand function is hyperbolic.  When this is combined with the facts that 

g
q1
(p,q1,q2;a, s) = !sa [q1 + q2 ]2 < 0  and g

q1q2
(p,q1,q2;a, s) = 2sa [q1 + q2 ]3 > 0 , it implies that 

!q1"(#) !p  may be either positive or negative.  In other words, the law of supply may not hold 

because of the change from a linear, to a hyperbolic, inverse demand function.  Consequently, 

the law of supply is not intrinsic to the sticky-price differential game, as it is contingent upon the 

assumption of a linear inverse demand function.  What is intrinsic to the sticky-price game, in 

general, that is, with a general form of a downward sloping inverse demand function and general 
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cost function, is the symmetry and positive semidefiniteness of S! q"(#)( ) , ! "{1,2} , as given by 

Theorem 1.  The detailed form of S! q"(#)( )  in this case is left for the reader to consider. 

6.  Concluding Remarks 

A complete characterization of the comparative dynamics of a locally differentiable feedback 

Nash equilibrium for the ubiquitous class of autonomous, exponentially discounted, and infinite 

horizon differential games has been achieved.  A symmetric and positive semidefinite matrix has 

been show to provide the said characterization, and an upper bound to the rank of the matrix has 

also been derived.  Assumptions that transcend those required for a locally differentiable charac-

terization of a differential game’s comparative dynamics were not made, thereby implying that 

the results given in Theorem 1 are basic, fundamental, or intrinsic to, all sufficiently smooth 

feedback Nash equilibria of the aforesaid class of differential games.  These results are hereto-

fore unknown properties of feedback Nash equilibria of the contemplated class of differential 

games, and constitute their basic, empirically testable properties. 

 The form of the intrinsic comparative dynamics consists of a nonstrategic component, 

viz., a generalized Slutsky-like expression, and a strategic component which captures of the ef-

fects that the other P !1 players have on a given player’s basic comparative dynamics.  Suffi-

cient conditions in the form of easy-to-verify additive separability conditions on the instantane-

ous payoff and transition functions with respect to the control variables were identified that ren-

der the strategic comparative dynamics component identically zero.  It turns out that many of the 

applied differential games meet the separability conditions, thus indicating the applicability and 

utility of Corollary 1 in applied modeling.  Moreover, for differential games that meet the sepa-

rability conditions, their intrinsic comparative dynamics are identical in form to those in optimal 

control problems, thereby demonstrating that even though such differential games are inherently 

strategic, their intrinsic comparative dynamics are devoid of strategic effects. 
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