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Abstract

We analyze personalized pricing by a monopsonist facing a finite number of ex

ante identical, capacity constrained suppliers with privately known costs. When the

distribution of costs is suffi ciently smooth and regular, the buyer chooses to make

the same offer to all suppliers, leading to a posted price. This price is lower than

the classical monopsony price if the demand function is concave, and higher if the

demand is convex. In the limit as the seller capacities tend to zero we obtain the

classical monopsony price. Therefore, our model provides a decentralized micro-

foundation for monopsony.
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1 Introduction

The classical model of monopsony postulates a single buyer who faces a deterministic

supply curve resulting from the aggregation of suppliers’ (marginal) costs. It is well-

known that the optimal linear (posted) price equates the “mark-down”1 to the reciprocal

of this supply’s elasticity. Even if the monopsonist could offer different prices to different

suppliers, or not to make offers to some of them, this linear price would still be optimal

as long as the monopsonist does not know where in the supply function each supplier

is located. Indeed, a deterministic supply guarantees that the monopsonist knows with

certainty the quantity purchased at each price.

The situation is different when the monopsonist faces uncertainty about supply, say,

due to asymmetric information about costs. Even if suppliers are indistinguishable and

even if (cost) uncertainty is independent across suppliers, in that case the monopsonist

faces (aggregate) uncertainty about the total supply it receives for any given price vector.

To deal with this uncertainty, there is a potential role both for different price offers to

different (ex ante identical) suppliers and for excluding some suppliers from the offers.

In this paper we study the optimal discriminatory price policy for a monopsonist that

faces this type of aggregate uncertainty. We obtain conditions under which linear prices,

that is, a common price offer for all available suppliers, is still optimal, and compare this

optimal offer to the corresponding classical monopsonist price under certainty. We also

study the limiting properties of personalized prices as the aggregate uncertainty vanishes.

While — to the best of our knowledge — this question has never been posed before,

Bulow and Roberts (1989) have shown that the mathematical problem of setting the

optimal monopsony price is the same as setting the optimal reserve price in an auction,

independently of the number of bidders. In other words, the optimal auction for ex ante

identical suppliers involves a (common) reserve price, which equals the optimal take-it-or-

leave-it offer to a single supplier: the monopsony price. Since Bulow and Roberts allow for

supply uncertainty and obtain uniform (reserve) prices, one might consider that posted

1This is the eqivalent of the Lerner index for monopsony, the difference between the buyer’s valua-

tion of the marginal unit and the price as a proportion of the price: P (S(p))−pp .
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prices continue to be optimal.2 However, setting (possibly personalized) prices and setting

reserve prices in an auction are conceptually different mechanisms. First, even though

the optimal “auction”treats suppliers symmetrically, the realized price(s) will often fall

short of the reserve price, the competition among suppliers reduces their information rent;

second, an “auction”is a centralized mechanism.3 That is, the terms of trade between the

monopsonist and any individual seller depend on the trades with other suppliers. Putting

it differently, the buyer commits for any given supplier not only to the way in which he

will use the information she reveals, but also to how he will use the information revealed

by all the other suppliers. Instead, we wish to investigate monopsony pricing when the

buyer is not able/willing to commit to a centralized mechanism.4

Thus, we consider the same problem of a monopsonist with multi-unit demand who

is faced with a finite number of ex ante symmetric, capacity constrained suppliers of

privately known costs, but maintaining decentralized interaction: the monopsonist may

offer prices personalized to each supplier —committing to trade at those prices if accepted

—but this is all he can do. That is, agreements/commitments are bilateral: the terms of

trade with each supplier is independent of the terms of trade with other suppliers. As we

discuss in the conclusions, this personalized-pricing procedure is also a useful ingredient

in models of price competition, where it leads to novel insights.

Our first result is to show that, under “mild”conditions on the distribution function

of costs, when suppliers are ex ante identical the personalized prices are all the same

2Although one has to be careful with extending the equivalence between setting optimal prices

and reserve prices beyond the environment of Bulow and Roberts (1989). For example, Burguet and

Sákovics (1999) show that identical competing sellers will not set reserve prices equal to marginal cost

in their auctions despite what happens in Bertrand competition.
3And not even optimal, at that. As argued in Bulow and Roberts (1989), for a monopsonist with

full commitment power, in the optimal mechanism the monopsonist announces a demand curve and

solicits ask prices by sellers. The resulting aggregate supply schedule together with the announced de-

mand is used to establish the market clearing price at which all the suppliers with ask prices below it

trade. Of course, in order to reduce the sellers’information rents, the announced demand schedule is

distorted relative to the monopsonist’s true demand function.
4For empirical evidence of firms using second-best organizational form (and thus pricing) see, for

example, Thomas (2011) and references therein. See also McElheran (2014) on delegation. For a theo-

retical overview of decentralization see Mookherjee (2006).
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and as a result, posted, i.e., linear, prices are constrained optimal. The condition we

identify is a strengthening of the traditional “regularity”condition in problems of trade

under asymmetric information, that the virtual cost5 of an arbitrary supplier has to be

increasing. Basically, we need a steeper slope for the virtual cost the more inelastic the

demand is and the fewer suppliers there are. Additionally, the range of possible costs

comes into play. When there is a gap between the lowest possible cost and the lowest

marginal valuation, the monopsonist may prefer to make fewer (serious) offers than there

are traders (and demand). If on the other hand, there is a gap between the highest possible

cost and the highest marginal valuation, the monopsonist may prefer to make some offers

that are surely accepted in addition to different offers at lower prices. Notably, however,

if the slope condition is met, all interior prices (that is, prices that will be refused and

accepted both with positive probability) are the same. It is only if the cost distribution

of suppliers is particularly “bumpy”that we observe heterogeneous interior prices offered

to homogeneous suppliers.

We also show that even though the buyer offers a posted price, this price can be

lower or higher than the corresponding classical monopsony price (roughly depending on

whether the demand function is “concave”or “convex”, respectively). The reason stems

from the fact that the monopsony price is determined by a point elasticity, while the

personalized price is optimized by taking expectations over the aggregate uncertainty.

Next, we introduce heterogeneity in cost distributions and show that, contrary to the

classic result, it is not necessarily the case that the less elastic market is offered the lower

price. We find conditions for that to be the case. Just as the ones for the optimality

of posted prices, these conditions are related to the slope of the monopsonist’s demand

function. Finally, we establish our convergence result: as supply is broken up into more

and more suppliers, the outcome of our mechanism converges to the textbook monopsony

pricing against a continuous supply function and the conditions for posted prices to be

optimal are eventually always satisfied.

5If costs are random draws from the distribution function F (c), the virtual cost function is given by

c+ F (c)/f(c) (c.f. Myerson, 1981).
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1.1 A brief review of the literature

The literature on optimal trading mechanisms6 is not directly relevant, as our interest

here is in a second best. Another strand of the literature makes pairwise comparisons

between bargaining, auctions and posted prices.7 Again, this is very different from our

approach, where we stay with the standard pricing mechanism and investigate the benefits

of discrimination in a hitherto unexplored context. Let us discuss some of the papers that

are more closely related to our proposed mechanism.

Riley and Zeckhauser (1983) consider a seller with commitment power who is visited

by buyers in sequence until she sells her unit. They show that the optimal strategy is

a common take-it-or-leave-it price. Of course, due to the sequential resolution (and the

unique item on offer) the aggregate uncertainty is minimal in this model.

Winter (2004) also obtains that offering different prices to identical agents is useful.

However, in his case the principal is using (some of the) prices as a coordination device

in a multiple-equilibrium scenario.

Alonso et al. (2008) also look at the possibility of decentralized organizational struc-

ture but they assume that the monopsonist is constrained to name a single price. There-

fore, the issue that determines whether a centrally set price or delegation to one of the

local managers is optimal is how local managers are willing to report their private in-

formation about demand. As it turns out, when they are expected to widely disagree,

decentralization is optimal.

Chen and Ishida (2013) consider the benefits of personalized pricing in a dynamic

context. They show that price discrimination can increase a seller’s expected profit if she

can commit to dynamic price schedules. Otherwise, the ability to price discriminate not

only is useless but can even harm the seller.

Finally, the logic of calculating expected marginal valuations is reminiscent of the

analysis of Martin and Pindyck (2015) of the benefit of averting one catastrophe of several

6Harris and Raviv (1981) is the classical study of the best mechanism of a single price setter faced

with asymmetric information.
7Notable early contributions are Bester (1993) and Wang (1993, 1995).
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impending ones.

2 The set-up: personalized pricing

Consider a risk neutral monopsonist with (marginal) willingness to pay vl ∈ [0, 1] for the

lth unit of a homogeneous good, l ∈ {1, 2, . . . , Q}, with v1 = 1 and vl ≥ vl+1. There

are Q unit-supply sellers8. Each seller has a unit capacity. Seller i’s cost (reservation

price) is ci and it is i’s private information. From the monopsonist’s — and the other

sellers’—point of view, ci (Seller i’s “type”) is the realization of an independent random

variable, with —strictly increasing and common knowledge —distribution function Fi(.)

and (differentiable) density function fi(.) on [ci, c̄i], where 0 ≤ ci < c̄i ≤ 1. To retain

simplicity and focus, we assume that Fi(.) is regular : ci + Fi(ci)
fi(ci)

is monotone increasing.9

We study monopsony pricing as implemented by a simultaneous personalized offer to

each seller, with full commitment. Note that, since there is aggregate uncertainty, and as

with a posted price, the buyer risks having to acquire too many (or too few) units: he

cannot adjust the prices and quantities ex post. This is an additional ingredient to the

usual trade-off under complete information, between paying a low price and increasing

the amount bought, that the monopsonist needs to take into account.

For clarity’s sake, we first consider ex ante identical sellers, where each seller’s cost is

independently drawn from the same F (.). We will later relax the symmetry assumption

(c.f. Section 5).

Before continuing with our analysis, we first specify the benchmark case of classical

monopsony and relate it to our personalized pricing model.

8As we allow for vi = 0 and as the demand for a higher number of units than there are available

sellers would never be satisfied, it is without loss of generality to assume that both maximum aggregate

supply and demand are Q units.
9This is the assumption that ensures that the first-order conditions imply the second-order condi-

tions in the standard auction design problem (c.f. Myerson, 1981).
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2.1 The benchmark: classical monopsony

The classical monopsony model postulates a buyer with a continuous,10 weakly decreasing

(inverse) demand function, V (.) that we can normalize, so that V (0) = 1 and V (Q) = 0.

To fit with our discrete set-up, we assume that V (.) is a left continuous step function, with

its steps at integer values: V (x) ≡ vn for x ∈ (n− 1, n]. The buyer faces a differentiable,

increasing (inverse) supply function S(.). On the supply side, our set-up also reduces to

the classical model if we remove the uncertainty about the costs, so that the total supply

at price p coincides with the expected quantity that the Q suppliers are willing to sell at

that price: S−1(p) = QF (p).

With this analogue, the optimal monopsony quantity, qM , calculated by equating

marginal valuation with marginal expenditure, would be the solution11 to

V (qM) =
dqMS(qM)

dqM
= S(qM) + qMS ′(qM). (1)

The optimal monopsony price would then be pM = S(qM), which gives us a translation

of (1) into prices:

V (S−1(pM)) = pM + S−1(pM)S ′(S−1(pM)) = pM +
S−1(pM)

(S−1)′ (pM)
. (2)

Substituting QF (pM) for S−1(pM), we obtain12

pM +
F (pM)

f(pM)
= V (QF (pM)). (3)

That is, the monopsonist posts a price that equates his marginal valuation with what

in our model is the virtual cost of an arbitrary seller. Equation (3) can also be written as

equality between the inverse of the supply’s elasticity and the markdown.
10To highlight the consequences of indivisibilities in our model, we assume —as the textbooks —that

the underlying supply and demand are continuous. The consequences of discontinuities in the classical

context are standard.
11The discontinuity is resolves by taking the infimum of quantities that lead to inverse (virtual) sup-

ply (the RHS) higher than inverse demand (the LHS).
12Given regularity, this equation has a unique solution.
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3 The super-regular case

The first question is, then, whether personalized pricing in the presence of supply uncer-

tainty will also result in identical individual price offers. As we will argue, the answer is

affi rmative if the probability distribution of costs satisfies an assumption that is stronger

than regularity. In Section 4, we discuss what might happen when the assumption is not

satisfied.

Unlike in the case of regularity, where the restriction on the allowable cost (i.e., supply)

distribution is exogenous, in our definition the constraint depends on the demand function

as well.13

Definition 1 The distribution of costs, F (.), is super-regular relative to {vl}l=1,2,...,Q if:
i)14 c + F (c)

f(c)
− F (c) max

l∈{1,2,...,Q}
{vl − vl+1} is strictly increasing in c, and ii) F (.)’s support

includes that of the demand (c = 0, c̄ = 1).

The slope restriction is stronger than regularity as −F (c) is strictly decreasing. It

serves to ensure that it is suboptimal for the buyer to target different parts of the supply

separately —à la third-degree price discrimination (e.g. in case of a multi-peaked supply

density). The support restriction makes sure that the probability that any positive offer

is accepted is positive and that no offer below the maximum valuation will be accepted

for certain. For l ∈ {0, 1, ..., Q− 1}, let

χl(x) =

(
Q− 1

l

)
F (x)l(1− F (x))Q−l−1,

the probability that l out of Q−1 (independent) draws from the distribution F are below

x.

Proposition 1 When the cost distribution is super-regular relative to the buyer’s mar-

ginal valuation of each unit, the optimal personalized pricing strategy is a unique (posted)

13It is straightforward to strengthen the assumption to be independent of V (.): just substitute 1 for

max
l∈{1,2,...,Q}

{vl − vl+1}.
14We let vQ+1 = 0.

8



price pD satisfying

pD +
F (pD)

f(pD)
=

Q−1∑
l=0

χl(p
D)vl+1. (4)

Proof. See the Appendix.

In other words, under super-regularity, the buyer does not (ab)use his ability to price

discriminate: he offers to buy at the same price from all sellers. Thus, even under (aggre-

gate) uncertainty of supply, our model offers a well-founded, game-theoretic foundation

for "posted prices". This qualitative feature coincides with what is an assumption in the

classical monopsony model. It is of particular note that this is not a convergence result:

the one price result holds for any number of sellers.

The optimality of committing to buy from all comers may be somewhat surprising.

Consider, for example, the extreme case when the buyer is looking for a single unit (and

so vl = 0 for all l > 1) from a large number Q of suppliers. The intuition for making a

serious offer to each seller even in this situation is, nonetheless, simple. If the buyer did

not make a serious offer to some seller then his profit made on her would be zero. On

the other hand, as long as the expected marginal valuation of the unit offered by this

seller —conditional on the offers made to the other sellers —is positive, by making an offer

below this value, the monopsonist would receive a positive expected net marginal payoff.

The expected marginal valuation of that seller’s unit could be zero only if the entire

demand is satisfied with probability one with the offers to the other sellers. However, in

equilibrium that cannot happen. It would entail making an offer of 1 to (at least) one

seller, leading to non-positive profits (on that seller). As a result, the optimal policy for

the monopsonist must include serious offers to all sellers. Note that this intuition only

relies on the support restriction in super-regularity. The constraint on the slopes of the

cost distribution and the demand ensures that the system of first-order conditions has a

unique, uniform solution.
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3.1 Posted prices and uncertainty

The fact that, under super-regularity, the buyer names the same price for all sellers does

not imply that this price coincides with the classical monopsony price. The decentralized

posted price, pD in (4), differs from the classical monopsony price, pM in (3), construed

as the optimal posted price when supply is (deterministic and) smooth and equals F (p).

The left-hand side of (3) and (4), the marginal expenditure (or virtual cost), is com-

mon to both expressions. However, the optimal price in the classic monopsony problem

equates this marginal expenditure to the (marginal) willingness to pay at the optimal

quantity. On the contrary, the optimal monopsony price under uncertainty, pD, equals

that marginal expenditure to the expectation of the marginal willingness to pay. That is,

pM depends only on the demand function evaluated at the optimal quantity (the trade-off

that determines it is local), whereas pD in (4) depends on the entire demand function.

Not surprisingly, there is no general ranking of these prices. The following example

illustrates.

Example 1 Assume F (x) ≡ x and there are three available sellers. Consider the fol-

lowing family of demand functions:15 v1 = 1, v2 = y, and v3 = 0. Using (1) it is

straightforward to verify that for y ≤ 2/3, pM = 1/3. On the other hand, (??) becomes

2c = (1− c)2 + 2(1− c)cy, leading to c2(1− 2y)− (4− 2y)c+ 1 = 0. It is straightforward

to check that for y > .5 this leads to pD > 1/3, and for y < .5 it leads to pD < 1/3.

Note that in the above example the threshold value of y = .5 corresponds to V (.) being

“linear”. This is not a coincidence. We can show in general that if V (.) is “concave”then

pM ≥ pD. This is a useful result as in most cases marginal valuations are —at least weakly

—decreasing. Unfortunately the step-function nature of demand means that to make the

result precise we need a few definitions.

Definition 2 For a step function f , denote by xf the highest value of f that is no greater

than x.
15For simplicity we work with discontinuous demand functions, it is trivial to see that the results

would hold with arbitrarily close continuous approximations.
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This is a rounding device, just like the integer value function, but instead of the set

of integers it uses the values of the step function. Next, we need to modify the definition

of concavity for step functions (that are obviously not concave in the standard sense):

Definition 3 We say that the left-continuous step function f(.) with steps at i ∈ {1, ..., Q},
is step-concave if and only if for all (i, j) ∈ {1, ..., Q − 1} × {2, ..., Q} with i < j and

a ∈ (0, 1) : af(i) + (1− a)f(j)f ≤ f(ai+ (1− a)j).

We can now extend Jensen’s inequality to step functions:

Theorem 2 (Jensen’s inequality) Let f be a left-continuous step function with steps at

i ∈ {1, ..., Q} and (p,x) a lottery with x values in {1, ..., Q}. If f is step-concave then∑
pif(xi)f ≤ f (

∑
pixi).

We can now state our result:

Proposition 2 If V (.) is step-concave then pM ≥pDV .

In other words, when the cost distribution is super-regular and the demand function

is step-concave, the Bulow-Roberts intuition16 holds in our model: the price under uncer-

tainty is lower than in the classical model. However, when either of these conditions is

violated, the situation can change: we can have multiple prices and/or the price(s) offered

can exceed pM (c.f. Example 1).

4 The possible consequences of prescinding from super-

regularity

While super-regularity is a reasonable assumption, it is clearly not always satisfied, in

particular when the number of suppliers is not large. It is therefore pertinent to investigate

16Recall that they say that the reserve price is same as the monopsony price and thus the actual

price is (weakly) lower.
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the consequences of the failure of its components. The proof of Proposition 1 hints at what

we might expect. Here we discuss these factors in some detail and provide examples (with

a given number of available sellers) to illustrate them. In Subsection 6 we will show that,

nonetheless, all the complications that might result from the failure of super-regularity

disappear in the limit as the number of supplier gets large (and their capacities decrease

to zero).

4.1 Uniform pricing depends on the slope restriction

When the slope restriction in super-regularity fails, the monopsonist may optimally price

discriminate between otherwise symmetric sellers, even if “classical” regularity is main-

tained. Note that this discrimination is different from third degree price discrimination

in that all suppliers are still assumed ex-ante identical. That is, the endogenous price

discrimination does not depend on any exogenous characteristic of suppliers.

The expected value of the marginal lth unit that the buyer acquires increases by the

step size multiplied by the probability of trade with the last inframarginal trader. This

needs to be factored into the “regularity”of the virtual cost. When vl may be significantly

larger than vl+1, then given that a high offer is made to a seller, and so the probability

that the lth unit is acquired is high, the optimal offer to another seller may be low, and

vice versa: if the offer made to the former is low, the best offer to the latter may be high.

Consider the following example:

Example 3 Assume that v1 = 1 and v2 = 0, and that there are only two (identi-

cal) sellers. Let F (x) = x10 for x ∈ [0, 1]. Note that d(x+F (x)/f(x))
dx

= 1.1 > 0 but
d(x+F (x)/f(x)−F (x))

dx
= 1.1 − 10x9 < 0 for x > .783. With the help of Mathematica it is

immediate to see that there are three real solutions to the system of first-order conditions.

A symmetric one with b = .8051 and two asymmetric ones with bi = .5714 and bj = .9057.

Substituting them into the objective function, the first leads to an expected buyer profit of

.0315, while the latter(s) to .0352. Thus, the optimal price vector is asymmetric.

This result is an interesting parallel with Kotowski (2018), who has shown that when
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the type distribution of ex ante symmetric bidders is not regular, asymmetric reserve

prices might be optimal for the bid-taker.

4.2 The number of surely accepted offers in a market depends

on c̄

Let us turn to the option of making surely accepted offers. For the monopsonist, these

have the obvious advantage of reducing uncertainty on the extensive margin. These offers

practically remove the highest valued units from the demand and a corresponding number

of suppliers from the supply, so that the “posted price”result holds only for the residual

market.

The intuition here is also reminiscent of the setting of a reserve price in a standard

auction, where the lowest buyer valuation is much higher than the seller’s. In that case,

a sale for the lowest possible valuation is so valuable that the marginal gain in price does

not compensate for risking to lose the sale. In the procurement context, we have the

same scenario: since the good can be bought for certain for a price that is a fraction

of its valuation, the expected gain from a more aggressive price offer cannot outweigh

the expected loss from possibly not buying it. The key factor therefore is the expected

valuation of the unit minus the highest possible cost. When this difference is suffi ciently

large, it is optimal to make an offer that cannot be refused.

The following example illustrates.

Example 4 Assume that v1 =1, v2 = 0.2, there are only two sellers, and F (x) =4x

with support [0, .25]. (4) becomes .8p + 1 − 4p = 2p, with solution p = 5/26 ≈ .192 and

corresponding profit π = 10/13 ≈ .769. If instead, the buyer sets one price equal to .25

(which is accepted for certain) and the optimal price of .1 for the other seller, his expected

profit is .75 + .1 .1
.25

= .79. Note that the optimal monopsony price without uncertainty of

costs, as in Subsection 2.1, would be .125, buying one unit and expecting a profit of .875.
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4.3 The number of serious offers in a market depends on c

When c > 0, any serious offer entails a price bounded away from zero. That is, if the

buyer makes a number of offers above the number of units for which he has positive

willingness to pay, then he risks incurring a loss that is also bounded away from zero. As

the expected value of the marginal unit is not bounded away from zero, it may be optimal

to make offers to only some of the potential sellers. The following example illustrates this

possibility.

Example 5 Assume that v1 = 1 and v2 = 0, and that there are only two sellers. Let

F (x) = x−c
1−c with support [c, 1]. If only one serious offer is made then Π1(b) = (1−b)F (b),

and the first-order condition is 1 = F (b)/f(b) + b. Substituting in for F , we obtain

b = 1+c
2
and thus Π1 = 1−c

4
. If two (equal)17 serious offers are made then the expected

profit is Π2(b) = 1− (1− F (b))2 − 2F (b)b, leading to the first-order condition 1− F (b) =

F (b)/f(b) + b. Substituting in for F , we obtain b = 1+c−c2
3−2c and thus Π2 = (1−c)2

3−2c . It is

straightforward to see that Π1 > Π2 if (and only if) c > 1/2.

5 Third-degree price discrimination

Aggregate uncertainty might also affect the direction of third-degree price discrimination.

Recall that, according to the classical multi-market monopsony model,18 the buyer should

optimally offer a higher price to the market with the higher price elasticity of supply. This

result need not hold in our model with uncertainty.

Indeed, let us reintroduce ex ante (observable) asymmetry among sellers. To consider

the simplest case, suppose there are two “markets”with Q1 and Q2 sellers, their cost

distributions being F (.) andG(.), respectively. In order to calculate the expected marginal

value we first need to calculate the probability that l items are sold when the buyer offers

p1 toQ1 sellers in market 1 and p2 toQ2 sellers in market 2. First, let us denote by χil(x;K)

the value of χl(x) when Q = K and the distribution function is the one characterizing

17Recall that uniform pricing is driven by the slope restriction in super-regularity.
18See, for example, Tirole (1988) page 137.
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suppliers in market i, for i = 1, 2. Also, and to save in notation, let χil(x;K) = 0 whenever

l ≥ K. We should also introduce an additional piece of notation:

ψ
l
(p1, p2;K1, K2) =

l∑
k=0

χ1k(p
1;K1)χ2l−k(p2;K

2).

ψ
l
represents the probability that l offers are accepted when Ki are made to sellers in

market i, each with a price of pi. We can now write the corresponding system of equations

for (4) as

Q1+Q2∑
j=1

ψ
j−1(p

1, p2;Q1 − 1, Q2)vj =
F (p1)

f(p1)
+ p1 (5)

Q1+Q2∑
j=1

ψ
j−1(p

1, p2;Q1, Q2 − 1)vj =
G(p2)

g(p2)
+ p2. (6)

It is now straightforward to generalize Proposition 1 to two (or more) classes of sellers.

Corollary 1 When both cost distributions are super-regular relative to the buyer’s mar-

ginal valuation of each unit, the optimal personalized pricing strategy is a posted price in

each market, satisfying (5)-(6).

We are not particularly interested in the uniqueness of the pairs of (uniform) prices

solving the first-order conditions. (In case there are several, the buyer simply chooses the

pair maximizing his expected utility.)

Returning to third-degree price discrimination, note that in the solution to (5), the

monopsonist again equals the marginal expenditure in market 1 (the right hand side) to

the expected willingness to pay for the marginal unit, the left hand side. The subtle point

here is that this expectation is taken conditional on all offers made in market 2, and all

but one made in market 1. Similarly, the solution to (6) depends on the same expectation

but conditional on all but one offers in market 2 and all offers in market 1.

Note that, for K1 +K2 − 1 ≥ l ≥ 1,

ψ
l
(p1, p2;K1, K2) (7)

= (1− F (p1))ψ
l
(p1, p2;K1 − 1, K2) + F (p1)ψ

l−1
(p1, p2;K1 − 1, K2)

= (1−G(p2))ψ
l
(p1, p2;K1, K2 − 1) +G(p2)ψ

l−1
(p1, p2;K1, K2 − 1).
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Indeed, the second line above simply separates one supplier from the first market, com-

putes the probability that l units are obtained from the K1 − 1 and K2 other suppliers,

and the probability that l− 1 units are obtained from them. Then multiplies these prob-

abilities by the probability of obtaining no unit or one unit from the separated supplier,

respectively. The third line is a similar exercise with a separated supplier from market 2.

Using (7), we can write the left-hand side of (5) as

Q1+Q2∑
j=1

ψ
j−1(p

1, p2;Q1 − 1, Q2)vj

= (1−G(p2))

Q1+Q2−1∑
j=1

ψ
j−1(p

1, p2;Q1 − 1, Q2 − 1)vj +

G(p2)

Q1+Q2−1∑
j=1

ψ
j−1(p

1, p2;Q1 − 1, Q2 − 1)vj+1

=

Q1+Q2−1∑
j=1

ψ
j−1(p

1, p2;Q1 − 1, Q2 − 1)vj

−G(p2)

Q1+Q2−1∑
j=1

ψ
j−1(p

1, p2;Q1 − 1, Q2 − 1)(vj − vj+1),

where we have also used the fact that

ψ
0
(p1, p2;Q1 − 1, Q2) = (1−G(p2))ψ

0
(p1, p2;Q1 − 1, Q2 − 1),

ψ
Q1+Q2−1

(p1, p2;Q1 − 1, Q2) = G(p2)ψ
Q1+Q2−2

(p1, p2;Q1 − 1, Q2 − 1)

Similarly for the left hand side of (6). Thus, we can write (5)-(6) as

Ep1,p2vj =
F (p1)

f(p1)
+ p1 +G(p2)Ep1,p2∆vj,

Ep1,p2vj =
G(p2)

g(p2)
+ p2 + F (p1)Ep1,p2∆vj,

where Ep1,p2vj =
∑Q1+Q2−1

j=1 ψ
j−1(p

1, p2;Q1− 1, Q2− 1)vj is the expected (marginal) value

of a unit bought from a supplier, given the offers made to Q1 − 1 suppliers in market 1

and to Q2 − 1 suppliers in market 2; and Ep1,p2∆vj is the expectation of the marginal

increase in this value relative to the case where one more unit is bought from the other

sellers, ∆vj = vj − vj+1, Ep1,p2
∑Q1+Q2−1

j=1 ψ
j−1(p

1, p2;Q1 − 1, Q2 − 1)(vj − vj+1).
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Now recall that the price elasticity of supply in market 1 is

εs1 =

(
dF (p)

dp

p

F (p)

)−1
=

(
f(p)

F (p)
p

)−1
.

Thus, the supply elasticity of a market at any price is proportional to the (inverse) hazard

rate. The intuition becomes clear if we write the optimal pricing formula in terms of the

hazard rate

Ep1,p2vj − p1 =
F (p1)

f(p1)
+G(p2)Ep1,p2∆vj (8)

Ep1,p2vj − p2 =
G(p2)

g(p2)
+ F (p1)Ep1,p2∆vj.

The inverse (reverse) hazard rate may be higher, yet the optimal price in that market

may be lower.

Note that, for all prices, Ep1,p2∆vj ≤ maxj ∆vj. Thus, once again, aggregate uncer-

tainty may results in changes that are related to the the additional term F (x) maxj ∆vj.

Combining the two equations in (8) we obtain

G(p2)

g(p2)
− F (p1)

f(p1)
+
(
F (p1)−G(p2)

)
Ep1,p2∆vj = p1 − p2.

Recall that reverse-hazard-rate dominance implies first order stochastic dominance. Then,

the following proposition is immediate:

Proposition 3 Suppose that both F and G are super-regular relative to {vl}, and for any
p, F (x)

f(x)
< G(x)

g(x)
(F reverse-hazard-rate dominates G; i.e., market 1’s supply is more elastic

than market 2’s). A suffi cient condition for the optimal monopsony price in market 1 to

be larger than that in market 2 is that for all x

F (x)

f(x)
− F (x) max

j
∆vj ≤

G(x)

g(x)
−G(x) max

j
∆vj.

Thus, just as a strengthening of regularity guarantees that the posted prices are indeed

optimal for a monopsonist, strengthening of inverse hazard rate dominance along the same

lines guarantees that prices for a third-degree price discriminating monopsonist follow the

same pattern as in the classical model of monopsony.
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As an illustration that when the suffi cient condition is not satisfied we can indeed

obtain the “wrong”price ordering, consider the following example:19

Example 6 Let , Q1 = Q2 = 1 v1 = 1 and v2 = 0, F (x) = x and G(x) = x2 if x ≤ .5

and G(x) = 1.5x− .5 for x > .5.20 Then (5)-(6) become

1− (p2)
2 if p2 ≤ .5

1.5(1− p2) if p2 > .5

 = 2p1 (9)

1− p1 =

 1.5p2 if p2 ≤ .5

2p2 − 1/3 if p2 > .5
.

Solving, we obtain p2 = 3−
√
5

2
< .5 < p1 =

√
5
2
· 3−

√
5

2
, while the price elasticities are

p1 · f(p
1)

F (p1)
≡ 1 < p2 · g(p

2)
G(p2)

= 2.

Once more, when the number of suppliers is large (and their capacity small, with

respect to the size of the market), maxj ∆vj is small and (given regularity) the suffi cient

condition in Proposition 3 is satisfied. Consequently, the expected values in the left hand

side of (5) and (6) for similar values of p1 and p2 approach, and then we recover the

predictions of the classical monopsony model. We now undertake to prove formally this

and previous convergence results. That is, to obtain the classical monopsony model as

the limit of our personalized price monopsonist.

6 Large markets and convergence

One of the goals of this paper is to provide a micro-foundation for the classical monopsony

model that relies on the buyer being able to make personal commitments to individual

suppliers, but without having the ability to make these commitments contingent on deal-

ings with other sellers. Thus, we now show that indeed, in the limit, where the buyer faces

19In fact, Example 3 could suffi ce, if we consider each seller as a different market, since elasticity is

(constant and) equal in both markets in that case, yet prices are different.
20We cannot use G(x) = x2 as it is not super-regular, so we could not appeal to the corollary.
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a large number of (capacity constrained) small suppliers, his optimal price vector reduces

to classical monopsony pricing (c.f. Section 2.1) without any additional assumption.

Let’s fix an integer t and let δ = 1
t
. Also, to save in notation without losing any

generality, let Q = 1. Suppose that each seller has an indivisible supply of δ units to sell

with probability α, and let si be the per-unit price the monopsonist offers supplier i for

her supply. When t = 1, this is the model analyzed in the previous section, for Q = 1.

As t gets large, both the demand and the supply become a closer approximation of the

underlying continuous functions (V (.) and F (.)): vq
δ

=
∫ q
q−δ

1
δ
V (x)dx→t→∞ V (q) and the

realization of tQ draws from F (.) converges to tQF (.) a.s. (by the Strong Law of Large

Numbers). In other words, as t increases without bound, our set-up converges to the

classical monopsony set-up. The question is whether our predictions converge as well.

The answer is affi rmative, and we will show it in two steps. First we will show that,

under symmetric pricing, (4) converges to (3). Next, we will argue that the optimal

solution to (4) near the limit must be symmetric, that is, a posted price, as long as F (.)

is regular, even if it is not super-regular.

Lemma 1 For any posted-price p,
∑t

j=1 vjχj−1(p)→t→∞ V (F (p)).

Proof. For each posted price p and given the total number of sellers t, the number j

of sellers (other than i) that accept the offer, n is a random variable with probability

distribution, χ
n
(p), a binomial with parameters (t − 1, F (c)). Also, by the Strong Law

of Large Numbers, these sellers’average supply converges a.s. to QF (p) as t − 1 → ∞.
That is, taking into account that each seller sells δ = 1

t
when accepting the offer, and that

t−1
t
→ 1, total supply of these t− 1 sellers converges a.s. to F (c). That is,

Pr [|δn− F (c)| < ε]→ 1, ∀ε > 0.

Therefore,
∑

j/t/∈(F (p)−ε,F (p)+ε) χj−1(p) → 0 as t → ∞, for all ε, and the result follows.

Lemma 2 For t suffi ciently large, the optimal personalized pricing scheme is a posted

price.
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Proof. That interior prices must be uniform for high enough t follows immediately

from the proof of Proposition 1. We only need to observe that, as V (.) is continuous,

max
l
{vl − vl+1} converges to zero as t → ∞, and so H(b−(j,k)) (an expectation of these

values) does too. Consequently, regularity is suffi cient for a unique interior solution.

To show that for high enough t no extreme offer will be made, we will first prove that

in equilibrium the marginal valuation must eventually be strictly above c. It then follows

that it is in the buyer’s interest to make serious offers.

Take a price which is strictly above c (there must be at least one since c < 1 = v1).

The marginal valuation for this unit must be at least as much as the price. Now take

another price which is not serious. As t increases, the difference between the marginal

valuations of these two units converges to zero, so the second unit is also worth a serious

price.

Next, note that unless the classical monopsony price equals c̄ —which happens if the

lowest marginal valuation is above the highest virtual cost —it must be the case that, for

t large enough, the marginal valuation is less than the highest virtual cost, implying that

(4) has an interior solution.

Putting these two lemmas together, we have proved our main convergence result:

Proposition 4 For t suffi ciently large, the buyer-optimal personalized price vector con-

verges to the classical monopsonist’s posted price.

It is also a straightforward corollary from Proposition 3 that the direction of third-

degree price discrimination also fixes itself when sellers are small:

Corollary 2 For t suffi ciently large, the market with higher price elasticity is offered the

higher price.

The assumption that the underlying (inverse) demand V (.) function is continuous

greatly simplifies the proof of these convergence results. We conjecture that it is possible

to extend the argument to an exogenously discontinuous demand, and to demonstrate

that our convergence results do not hinge on the continuity of V (.).
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7 Conclusion

In this paper, we delve into the micro-structure of monopsony and provide a “decentral-

ized”mechanism, whose limit is the standard model. We show that there is no need for an

“invisible hand”: under mild conditions, optimal pricing with personalized commitment

leads to a posted price even far away from the limit.

Our one-seller-one-unit set-up can be easily extended to multiunit sellers, as long as

they have constant marginal costs. While, our procedure would allow the buyer to make

a different price offer for each unit of a seller, optimally he would set a constant price for

all. Increasing (decreasing) marginal costs would introduce the usual incentives towards

distributing (concentrating) procurement over suppliers and would take us away from the

classical model.

We have dealt with bilateral commitment in static games. In dynamic games and

without dynamic (multilateral) commitment, the monopsonist could make their future

decisions depend on past realizations of trade. That dynamic monopoly problem is an

interesting extension of this paper.

The restriction to static mechanisms imposed by our main goal of microfounding

monopsony, makes it impractical to think about our model in a mechanism design context:

the sequential resolution of uncertainty would clearly be beneficial. Nonetheless, it is of

note that our personalized pricing scheme is the best mechanism the buyer can devise

subject to bilateral commitment in the static context. Insisting on bilateral commitment

is the alternative approach to designing credible mechanisms where the principal does not

cheat because the incentives are set right, as in Li (2017) and Akbarpour and Li (2018).

Finally, it is important to point out that the personalized price setting mechanism

that we analyze in this paper can be usefully adapted to the context of competing price

setters. Burguet and Sákovics (2017a, 2017b, 2019) are witnesses to this. In the first

paper, personalized pricing leads to a model of simultaneous price competition without

the need for rationing (in case, given prices, demand exceeds supply) or demand sharing

(in case, given prices, supply exceeds demand) as these are determined endogenously

by the equilibrium bid vectors. The equilibrium is unique even when marginal cost are
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increasing: the price is competitive with positive profits.

In the second paper there is competition for input between two firms that also compete

in the product market. Here, personalized pricing allows firms to strategically target their

offers at the suppliers of their competitors. The “competitive foreclosure” that ensues

leads to higher aggregate input (and, therefore output and effi ciency), contrary to the

usual foreclosure logic, which tends to lead to ineffi ciency.

The third paper extends the previous study to the case where the product market is

collusive, as in the competition for talent in a sports league. It provides micro-foundations

for some classical invariance theorems in the literature.

8 Appendix

8.1 Proof of Proposition 1

First, we show that there can be no two different interior prices. Take any two interior

prices, bj, bk. Given the rest of the prices, we can compute the probabilities that the

buyer obtains l ∈ {0, 1, .., Q− 2} units from these other sellers. Let those probabilities be
denoted by Φ̃l(b−(j,k)). Then, the buyer’s expected profit can be written as

Q−2∑
l=0

Φ̃l(b−(j,k))
{[
F (bk) + (1− F (bk))F (bj)

]
vl+1 + F (bj)F (bk)vl+2 − F (bj)bj − F (bk)bk

}
.

To see this, note that, from the two sellers considered, the buyer will buy at least one

unit if either he buys from the kth seller (and either buys or not from the jth one) or if he

does not buy from the kth but buys from the jth seller. He will get a second unit if and

only if he buys from both. Finally, he pays each seller if and only if he buys from them.

Thus, the first-order condition for bj is

Q−2∑
l=0

Φ̃l(b−(j,k))
{
f(bj)

[
F (bk)vl+2 +

(
1− F (bk)

)
vl+1 − bj

]
− F (bj)

}
= 0,

and similarly for bk. As
∑Q−2

l=0 Φ̃l(b−(j,k)) = 1, we can write this first-order condition in
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the familiar way (c.f. (3)),
F (bj)

f(bj)
+ bj = v̂j ,

where

v̂j =

Q−2∑
l=0

Φ̃l(b−(j,k))
{
F (bk)vl+2 +

(
1− F (bk)

)
vl+1

}
is the expected value of the unit potentially bought from seller j.21 We can rewrite

v̂j =

Q−2∑
l=0

Φ̃l(b−(j,k))vl+1 − F (bk)

Q−2∑
l=0

Φ̃l(b−(j,k)) (vl+1 − vl+2)

=

Q−2∑
l=0

Φ̃l(b−(j,k))vl+1 − F (bk)H(b−(j,k)),

where H(b−(j,k)) =
∑Q−2

l=0 Φ̃l(b−(j,k)) (vl+1 − vl+2). Then, the first-order conditions with
respect to bj and bk imply

F (bj)

f(bj)
+ bj − F (bj)H(b−(j,k)) =

F (bk)

f(bk)
+ bk − F (bk)H(b−(j,k)) =

Q−2∑
l=0

Φ̃l(b−(j,k))vl+1 −
[
F (bk) + F (bj)

]
H(b−(j,k)) .

Therefore, if

b+
F (b)

f(b)
− F (b)H(b−(j,k)) (10)

is strictly monotone, we must have bj = bk. Finally, observe that, since H(b−(j,k)) =∑Q−2
l=0 Φ̃l(b−(j,k)) (vl+1 − vl+2) ≤ max

l
{vl − vl+1}, the strict monotonicity of b + F (b)

f(b)
−

F (b)max
l
{vl − vl+1} implies strict monotonicity of (10) —and super-regularity implies the

former. Repeating this argument for every pair of sellers, we obtain that all interior prices

must be equal. Note that the above argument is independent of the support of F (.).

We now prove that no corner prices —0 or 1 —can be charged in equilibrium, so a

posted interior price is indeed optimal. Assume that it is optimal to offer a price of 1

—note that, given c̄ ≥ 1, that is the lowest offer possibly accepted for certain — to a

seller. As the marginal value of this unit is bounded by 1, the maximum profit on this

transaction is zero, attained only when the expected marginal valuation is indeed 1. But

21Note that, by regularity, the second-order condition is satisfied.
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then, as the probability that a price p < 1 is accepted is F (p) > 0, offering a lower price

would lead to a positive profit.

Next, assume that it is optimal to offer a price of 0 to a seller. Obviously, that would

lead to no profit on that seller. However, as long as there is a positive expected marginal

valuation for that “last”unit, an offer to buy for a price above it will be accepted with

positive probability — note that, given c = 0, there are always seller types below any

positive value —and thus lead to positive marginal profit. The only way not to have a

positive expected marginal valuation would be if the seller made at least one offer that is

certainly accepted. However, we have just shown that such an offer is never made.

Finally, to obtain (4) just note that
∑Q−2

l=0 Φ̃l(p
D)
{
F (pD)vl+2 +

(
1− F (pD)

)
vl+1

}
=∑Q−1

l=0 χl(p
D)vl+1.

8.2 Proof of Theorem 2

We prove by induction. Let us first treat the trivial case where the lottery has two possible

prizes. As f is concave, we directly have that p1f(x1) + p2f(x2)f ≤ f(p1x1 + p2x2). Now

assume the result holds for n prizes. Now assume that we have n+ 1 prizes. Write (note

the square brackets denote the integer part of an expression)

f

(
n+1∑
i=1

p′ix
′
i

)
≡ f

(
(1− p′n+1)

n∑
i=1

p′ix
′
i

1− p′n+1
+ p′n+1x

′
n+1

)
(11)

= f

(
(1− p′n+1)

([
n∑
i=1

p′ix
′
i

1− p′n+1

]
+ 1

)
+ p′n+1x

′
n+1

)
(12)

≥ (1− p′n+1)f
([

n∑
i=1

p′ix
′
i

1− p′n+1

]
+ 1

)
+ p′n+1f

(
x′n+1

)
f

, (13)

where the second equality follows from f being a step function with steps at integer values,

while the inequality follows from the concavity of f . Applying the result for n prizes we

obtain
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(1− p′n+1)f
([

n∑
i=1

p′ix
′
i

1− p′n+1

]
+ 1

)
+ p′n+1f

(
x′n+1

)
f

= (1− p′n+1)f
(

n∑
i=1

p′ix
′
i

1− p′n+1

)
+ p′n+1f

(
x′n+1

)
f

≥

(1− p′n+1)
n∑
i=1

p′if(x′i)

1− p′n+1
+ p′n+1f

(
x′n+1

)
f

=

n+1∑
i=1

p′if(x′i)

f

completing the proof.

8.3 Proof of Proposition 2

Note that both prices are equating the virtual cost to: i) in the no uncertainty case the

demand function evaluated at the expected amount of trade; ii) in case of personalized

pricing to the expected value of the marginal valuation (demand). Thus, as the virtual

cost is increasing, all we need to show is that

Q−1∑
l=0

χl(p)vl+1 ≤ V (QF (p)) .

Since V (.) is step-concave, by Theorem 2

Q−1∑
l=0

χl(p)vl+1 =

Q−1∑
l=0

χl(p)V (l + 1)

V

≤ V

(
Q−1∑
l=0

χl(p)(l + 1)

)
.

It is immediate —by the formula for the mean of the binomial distribution — that the

right-hand side equals V ((Q− 1)F (p) + 1). Therefore, since V is decreasing, it follows

that
Q−1∑
l=0

χl(p)vl+1

V

≤ V (QF (p)) .
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